Skip to main content

Traditional Hot-Electron MOS Devices for Novel Optoelectronic Applications

  • Conference paper
Nonequilibrium Carrier Dynamics in Semiconductors

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 110))

Abstract

We report the realization of highly-efficient light emitting MOS devices which are based on hot-electron excitation of rare-earth ions implanted into SiO2. The implantation of Gd+ and Tb+ ions yields emission wavelengths of 316 nm and 541 nm with external quantum efficiencies up to 1% and 16%, respectively. The observed threshold electric fields for observing electroluminescence are in accordance with the injection of hot electrons via Fowler-Nordheim tunneling into SiO2 at field strengths in the range of 8–9 MV/cm. The presence of different electroluminescence bands of the Tb-implanted devices allows us to study details of the hot-electron excitation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Kunemitsu, Phys. Rep. 263, 1 (1995).

    Article  ADS  Google Scholar 

  2. J. M. Sun, T. Dekorsy, W. Skorupa, B. Schmidt, and M. Helm, Appl. Phys. Lett. 83, 3385 (2003).

    Google Scholar 

  3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, Nature 408, 440 (2000).

    Article  ADS  Google Scholar 

  4. F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, Appl. Phys. Lett. 81, 3242 (2002).

    Article  ADS  Google Scholar 

  5. J. M. Sun, W. Skorupa, T. Dekorsy, and M. Helm, J. Appl. Phys. 97, 123513 (2005).

    Article  ADS  Google Scholar 

  6. J. M. Sun, W. Skorupa, T. Dekorsy, M. Helm, L. Rebohle, and T. Gebel, Appl. Phys. Lett. 85, 3387 (2004).

    Article  ADS  Google Scholar 

  7. L. Ma, G. Zhong, and S. Xu, Chinese Lumin. Display 6, 192 (1985).

    Google Scholar 

  8. D.C. Krupka, J. Appl. Phys. 43, 476 (1972).

    Article  ADS  Google Scholar 

  9. J. M. Sun, G. Z. Zhong, X. W. Fan, C. W. Zheng, G.O. Mueller, and R. Mueller-Mach, J. Appl. Phys. 83, 3374 (1998).

    Article  ADS  Google Scholar 

  10. D. J. DiMaria, E. Carrier, and D. Arnold, J. Appl. Phys. 73, 3367 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Berlag Berlin Heidelberg

About this paper

Cite this paper

Dekorsy, T., Sun, J., Skorupa, W., Helm, M., Rebohle, L., Gebel, T. (2006). Traditional Hot-Electron MOS Devices for Novel Optoelectronic Applications. In: Saraniti, M., Ravaioli, U. (eds) Nonequilibrium Carrier Dynamics in Semiconductors. Springer Proceedings in Physics, vol 110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36588-4_60

Download citation

Publish with us

Policies and ethics