Skip to main content

Simulations of the Gramicidin A Channel by Using the TR-PNP Model

  • Conference paper
Nonequilibrium Carrier Dynamics in Semiconductors

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 110))

  • 1093 Accesses

Abstract

We propose an extension (TR-PNP) of the traditional PNP model by explicitly taking into account the effects of ion trapping and release. Our solution to this problem has originated from the treatment introduced by Shockley, Read and Hall model in semiconductor theory. Simulation results are presented for the Gramicidin A channel by using both the TR-PNP and the PNP models and are compared with experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, D., Lear J., and Eisenberg, B.: ‘Permeation Through an Open Channel: Poisson-Nernst-Planck Theory of a Synthetic Ionic Channel’, Biophys. J., 72, 97–116, 1997.

    Article  ADS  Google Scholar 

  2. http://www-tcad.stanford.edu/~prophet/

    Google Scholar 

  3. Van der Straaten, T.A., et. al.: ‘Simulating Ion Permeation Through the ompF Porin Channel Using Three-Dimensional Drift-Diffusion Theory’, J. Comp. Elec, 2, 29–47, 2003.

    Article  Google Scholar 

  4. Hu, S., Hess, K.: ‘An Application of the Recombination and Generation Theory by Shockley, Read and Hall to Biological Ion Channels’, J. Comp. Elec., 4, 153–156, 2005.

    Article  Google Scholar 

  5. http://www.rcsb.org/pdb/

    Google Scholar 

  6. Baker, N. A., Sept, D., Joseph, S., Hoist, M. J., and McCammon, J. A.: ‘Electrostatics of Nanosystems: Application to Microtubules and the Ribosome’, Proc. Natl. Acad. Sci. USA, 98, 10037–10041, 2001

    Article  ADS  Google Scholar 

  7. Van der Straaten, T.A., et. al.: ‘BioMOCA — A Boltzmann Transport Monte Carlo Model for Ion Channel Simulation’, Molecular Simulation, 31, 151–171, 2005.

    Article  Google Scholar 

  8. Busath, D. D., et. al.: ‘Noncontact Dipole Effects on Channel Permeation. I. Experiments with (5F-Indole)Trp13 Gramicidin A Channels’, Biophys. J., 75, 2830–2844, 1998

    Article  ADS  Google Scholar 

  9. Chiu, S-W, Novotny J. A. and Jakobsson, E.: ‘The Nature of Ion and Water Barrier Crossings in a Simulated Ion Channel’, Biophys. J., 64, 98–108, 1998

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Berlag Berlin Heidelberg

About this paper

Cite this paper

Hu, S., Hess, K. (2006). Simulations of the Gramicidin A Channel by Using the TR-PNP Model. In: Saraniti, M., Ravaioli, U. (eds) Nonequilibrium Carrier Dynamics in Semiconductors. Springer Proceedings in Physics, vol 110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36588-4_49

Download citation

Publish with us

Policies and ethics