Skip to main content

Interface Circuits for QCM Sensors

  • Chapter
Piezoelectric Sensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 5))

Abstract

Oscillators are the standard interface circuits for quartz crystal resonator sensors. When applying these sensors in gases a large set of circuits is available, which can be adapted to particular applications. In liquid applications viscous damping accompanied by a significant loss in the Q factor of the resonator requires specific solutions. We summarize major design rules and discuss approved solutions. We especially address the series resonance frequency and motional resistance determination and parallel capacitance compensation. We furthermore introduce recent developments in network analysis and impulse excitation technique for more sophisticated applications. Impedance analysis especially allows a more complete characterization of the sensor and can nowadays be realized with sensor interface circuitry. The performance of electrical circuitry depends essentially on the stability of the acoustic device. We therefore begin with a discussion of selected quartz crystal properties, disturbances from temperature and mechanical stress, and analyze AT and BT cut from the sensor point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lucklum R, Hauptmann P (2006) Anal Bioanal Chem 384:667

    Article  PubMed  CAS  Google Scholar 

  2. Matthys RJ (1992) Crystal oscillator circuits, revised edn. Krieger, Malabar

    Google Scholar 

  3. Rhea RW (1995) Oscillator design and computer simulation, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  4. Gottlieb IM (1997) Practical oscillator handbook. Newnes, Oxford

    Google Scholar 

  5. Graf RF (1997) Oscillator circuits. Newnes, Boston

    Google Scholar 

  6. Kim Y, Vig JR (2001) IEEE Int Frequ Contr Symp Proc, p 551

    Google Scholar 

  7. Walls FL, Vig JR (1995) IEEE Trans Ultrason Ferroelectr Freq Control 42:576

    Article  Google Scholar 

  8. Howe DA (2000) IEEE Trans Ultrason Ferroelelectr Freq Control 47:1102

    Article  CAS  Google Scholar 

  9. Vig JR, Walls FL (2000) IEEE/EIA Int Frequ Contr Symp Proc, p 30

    Google Scholar 

  10. Lack FR, Willard GW, Fair IE (1934) Bell Syst Tech J 13:453

    Google Scholar 

  11. Bottom VE (1947) Am Mineral 32:590

    Google Scholar 

  12. Kosinski JA, Pastore RA (2001) IEEE Trans Ultrason Ferroelectr Freq Control 48:1426

    Article  PubMed  CAS  Google Scholar 

  13. EerNisse EP, Clayton LD, Watts HD (1990) IEEE Trans Ultrason Ferroelectr Freq Control 37:571

    Article  CAS  Google Scholar 

  14. Tiersten HF (1978) J Acoust Soc Amer 64:832

    Article  ADS  Google Scholar 

  15. Tiersten HF (1996) IEEE Int Freq Contr Symp Proc, p 449

    Google Scholar 

  16. Filler RL, Kosinski JA, Vig JR (1983) 37th Annu Symp Freq Contr Proc, p 265

    Google Scholar 

  17. Borngräber R (2001) Quarzresonanzsensoren für flüssige Medien — Systemdesign und Anwendung. Shaker, Aachen

    Google Scholar 

  18. Ballato A (1977) Doubly rotated thickness mode plate vibrators. In: Mason WP, Thurston RN (eds) Physical acoustics: principles and methods, vol XIII. Academic, New York

    Google Scholar 

  19. Auld BA (1990) Acoustic fields and waves. In: Solids, vol 1+2. Krieger, Melbourne

    Google Scholar 

  20. Schmidt RF, Allen JW, Vetelino JF, Parks J, Zhang C (2001) Sensors Actuators B 76:95

    Article  Google Scholar 

  21. Salt D (1987) Hy-Q handbook of quartz crystal devices. Van Nostrand Reinhold, New York

    Google Scholar 

  22. Behling C, Lucklum R, Hauptmann P (1997) Sensors Actuators A 61:260

    Article  Google Scholar 

  23. Lucklum R, Hauptmann P (2003) Meas Sci Technol 14:1854

    Article  ADS  CAS  Google Scholar 

  24. Lin Z, Yip CM, Joseph IS, Ward MD (1993) Anal Chem 65:1546

    Article  CAS  Google Scholar 

  25. Zimmermann B, Lucklum R, Hauptmann P, Rabe J, Büttgenbach S (2001) Sensors Actuators B 76:47

    Article  Google Scholar 

  26. Rabe J, Büttgenbach S, Schrütter J, Hauptmann P (2003) IEEE Sensors J 3:361

    Article  CAS  Google Scholar 

  27. Bottom VE (1982) Introduction to quartz crystal unit design, Van Nostrand Reinhold, New York, p 165

    Google Scholar 

  28. Shockley W, Curran DR, Koneval DJ (1966) J Acoust Am Soc 41:981

    Article  Google Scholar 

  29. Lu F, Lee HP, Lim SP (2005) Smart Mater Struct 14:272

    Article  ADS  Google Scholar 

  30. Bechmann R (1952) J Sci Instr 29:73

    Article  ADS  Google Scholar 

  31. Schröder J (2003) Miniaturisierter Impedanzanalysator und hochfrequente Sensorarrays für die Quarzmikrobalance in Flüssigkeiten. Shaker, Aachen

    Google Scholar 

  32. Rosenbaum JF (1988) Bulk acoustic wave theory and devices. Artech, Boston

    MATH  Google Scholar 

  33. Auge J, Hauptmann P, Eichelbaum F, Rösler S (1994) Sensors Actuators B 18–19:518

    Article  Google Scholar 

  34. Gerber EA, Ballato A (ed) (1985) Precision frequency control, vol II: oscillators and standards. Academic, New York

    Google Scholar 

  35. Barnes C (1991) Sensors Actuators A 29:59

    Article  Google Scholar 

  36. Borngräber R, Schröder J, Lucklum R, Hauptmann P (2002) IEEE Trans Ultraso Ferroelectr Freq Control 49:1254

    Article  Google Scholar 

  37. Behling C, Lucklum R, Hauptmann P (1999) IEEE Trans Ultrason Ferroelectr Freq Control 46:1431

    Article  CAS  Google Scholar 

  38. Schröder J, Borngräber R, Lucklum R, Hauptmann P (2001) Rev Sci Instr 72:275

    Article  CAS  Google Scholar 

  39. Wessendorf KO (1993) 47th Freq Contr Symp Proc, p 711

    Google Scholar 

  40. Baker B (1996) Tuning in amplifiers (AB-105). Burr-Brown, Tucson

    Google Scholar 

  41. Henn Ch (1993) New ultra high-speed circuit techniques with analog ICs (AB-183). Burr-Brown, Tucson

    Google Scholar 

  42. (1995) Data Sheet OPA660 (PDS-1072E) Burr-Brown, Tucson

    Google Scholar 

  43. (2005) Data Sheet OPA860 (SBOS331) Texas Instruments, Dallas

    Google Scholar 

  44. Rösler S, Lucklum R, Borngräber R, Hartmann J, Hauptmann P (1998) Sensors Actuator B 48:415

    Article  Google Scholar 

  45. Eichelbaum F, Borngräber R, Schröder J, Lucklum R, Hauptmann P (1999) Rev Sc Instr 70:2537

    Article  ADS  CAS  Google Scholar 

  46. Arnau A, Sogorb T, Jiménez Y (2000) Rev Sci Instr 71:2563

    Article  ADS  CAS  Google Scholar 

  47. Arnau A, Sogorb T, Jiménez Y (2002) Rev Sci Instr 73:2724

    Article  ADS  CAS  Google Scholar 

  48. Ferrari V, Marioli D, Taroni A (2003) IEEE Sensors 2003 Proc 2:849

    Google Scholar 

  49. Jacoby B, Art G, Bastemeijer J (2003) IEEE Sensors 2003 Proc 2:839

    Google Scholar 

  50. Jacoby B, Art G, Bastemeijer J (2005) IEEE Sensors 5:1106

    Article  Google Scholar 

  51. Schröder J, Doerner S, Schneider T, Hauptmann P (2004) Meas Sci Technol 15:1271

    Article  ADS  CAS  Google Scholar 

  52. Schnitzer R, Reiter C, Harms KC, Benes E, Groschl M (2004) IEEE Sensors 2004 Proc 2:798

    Article  Google Scholar 

  53. Doerner S, Schneider T, Schröder J, Hauptmann P (2003) IEEE Sensors 2003 Proc 1:596

    Google Scholar 

  54. Schneider T, Richter D, Doerner S, Fritze H, Hauptmann P (2005) Sensors Actuators B 111–112:187

    Article  CAS  Google Scholar 

  55. Rohdal M, Höök F, Krozer A, Kasemo B (1996) WO Patent WO9635103

    Google Scholar 

  56. Edvardsson M, Rodahl M, Kasemo B, Höök F (2005) Anal Chem 77:4918

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Lucklum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lucklum, R., Eichelbaum, F. (2006). Interface Circuits for QCM Sensors. In: Janshoff, A., Steinem, C. (eds) Piezoelectric Sensors. Springer Series on Chemical Sensors and Biosensors, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36568-6_1

Download citation

Publish with us

Policies and ethics