Skip to main content

Damage and Failure of Ceramic Metal Composites: Experimental and Numerical Investigations

  • Chapter
  • 531 Accesses

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 10))

Abstract

Failure in ceramic metal composites due to temperature induced stresses during production and external loading is investigated. Two different structures, a, metal layer between two ceramic supports and an inter-penetrating network, correlated to two different failure modes are studied in detail. Cavitation is found to be one significant mode of (internal) damage, which decreases the strength of the composite and subsequently leads to failure. Interface debonding, in conjunction with crack branching at the interface is another failure mode. Experimental observations are compared with numerical calculations, leading to a theoretical description to predict the failure mode and the critical stresses in the composite.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashby M. F., Blunt F. J., Bannister M. (1989) Flow Characteristics of Highly Constrained Metal Wires. Acta metallurgica 37, 1847–1857

    Article  Google Scholar 

  2. Ball J. M. (1982) Discontinuous Equilibrium Solutions and Cavitation in Nonlinear Elasticity. Philosophical Transactions of the Royal Society of London Series A 306, 557–611

    Article  MathSciNet  MATH  Google Scholar 

  3. Diemer M. (1998) Benetzungsverhalten und mechanische Eigenschaften der Cu/Al2O3-Grenzfläche, TU Darmstadt, Dissertation.

    Google Scholar 

  4. Emmel T. (1995) Untersuchung des Bruchverhaltens von Metall-Keramik-Verbundwerkstoffen, TH Darmstadt, Master Thesis.

    Google Scholar 

  5. Emmel T. (2002) Theoretische und numerische Untersuchung von Versagensmechanismen in Metall-Keramik-Verbundwerkstoffen, TU Darmstadt, Inst. für Mechanik, Dissertation.

    Google Scholar 

  6. Gross D., Seelig Th. (2001) Bruchmechanik mit einer Einführung in die Mikromechanik Springer Verlag, Berlin Heidelberg.

    Google Scholar 

  7. Gurson A. L. (1977) Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I — Yield Criteria and Flow Rules of Porous Ductile Media. Journal for Engineering Materials in Technology 99, 2–15

    Article  Google Scholar 

  8. Hill R. (1964) Theory of Mechanical Properties of Fibre-Strengthened Materials: I. Elastic Behaviour. Journal of the Mechanics and Physics of Solids 12, 199–212

    Article  MathSciNet  Google Scholar 

  9. Hill R. (1964) Theory of Mechanical Properties of Fibre-Strengthened Materials: II. Inelastic Behaviour. Journal of the Mechanics and Physics of Solids 12, 213–218

    Article  MathSciNet  Google Scholar 

  10. Hoffman M., Fiedler B., Emmel T., Prielipp H., Claussen N., Gross D., Rödel J. (1997) Fracture Behaviour in Metal Fibre Reinforced Ceramics. Acta materialia 45, 3609–3623

    Article  Google Scholar 

  11. Horgan C. O., Poligone D. A. (1995) Cavitation in Nonlinearly Elastic Solids: A Review. Applied Mechanics Reviews 48, 471–485

    Article  Google Scholar 

  12. Huang Y., Hutchinson, J. W., Tvergaard V. (1991) Cavitation Instabilities in Elastic-Plastic Solids. Journal of the Mechanics and Physics of Solids 39, 223–241

    Article  Google Scholar 

  13. Hutchinson J. W., Mear M. E., Rice J. R. (1987) Crack Paralleling an Interface Between Dissimilar Materials. Journal of Applied Mechanics 55, 828–832

    Article  Google Scholar 

  14. Kolling S. (2001) Zur numerischen Simulation von Morphologiednderungen in mikroheterogenen Materialien, TU Darmstadt, Inst. für Mechanik, Dissertation.

    Google Scholar 

  15. Muller R. (2001) 3D-Simulationen der Mikrostrukturentwicklung in Zwei-Phasen-Materialien, TU Darmstadt, Inst. f-ür Mechanik, Dissertation.

    Google Scholar 

  16. Mura T. (1982) Micromechanics of Defects in Solids. The Hague Boston London : Martinus Nijhoff, (Mechanics of elastic and inelastic solids 3).

    Google Scholar 

  17. Rödel J., Kelly J. F., Lawn B. R. (1993) In-Situ Measurement of Bridged crack Interfaces in the Scanning Electron Microscope. Journal of the American Ceramic Society 76, 369–375

    Article  Google Scholar 

  18. Schmid R. (1983) A Thermodynamic Analysis of the Cu-O System with an associated Solution Model. Metall. Trans. 14B, 473–481

    Google Scholar 

  19. Varias A. G., Suo Z., Shih C. F. (1991) Ductile Failure of a Constrained Metal Foil. Journal of the Mechanics and Physics of Solids 39, 963–986

    Article  Google Scholar 

  20. Zimmermann A., Hoffman, M., Emmel T., Gross D., Rödel J. (2001) Failure of metal-ceramic composites with spherical inclusions. Acta materialia 49, 3177–3187

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Emmel, T., Stiefel, U., Gross, D., Rödel, J. (2003). Damage and Failure of Ceramic Metal Composites: Experimental and Numerical Investigations. In: Hutter, K., Baaser, H. (eds) Deformation and Failure in Metallic Materials. Lecture Notes in Applied and Computational Mechanics, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36564-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36564-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05649-9

  • Online ISBN: 978-3-540-36564-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics