Skip to main content

A Model of Finite Strain Viscoplasticity with an Anisotropic Elastic Constitutive Law

  • Chapter
Deformation and Failure in Metallic Materials

Abstract

We deal with the anisotropic formulation for the stress tensor within theories of viscoplasticity and a multiplicative framework. As the formulation of an anisotropic strain energy function has not been yet established in the literature, we first discuss the theory and give a justification for it from a purely theoretical point of view. The inelastic behaviour is assumed to be governed by evolution equations of the unified type. As the anisotropic formulation considerably complicates the numerical approach, the numerical treatment is developed in full detail. Various numerical examples with applications to shells are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besseling J.F. (1968) A thermodynamic approach to rheology. In: Parkus H., Seddov, L.I. (Eds.) Irreversible Aspects of Continuum Mechanics. Springer, Wien

    Google Scholar 

  2. Bodner S. R., Partom Y. (1975) Constitutive equations for elastic-viscoplastic strain-hardening materials. ASME Journal of Applied Mechanics 42: 385–389

    Article  Google Scholar 

  3. Boehler J.P. (Ed.) (1987) Applications of Tensor Functions in Solid Mechanics. Springer, Wien

    MATH  Google Scholar 

  4. Boehlke T., Bertram A. (2001) The evolution of Hooke’s law due to texture development in FCC polycrystals. International Journal of Solids and Structures 38: 9437–9459

    Article  MATH  Google Scholar 

  5. Dubrovin B.A., Fomenko A T., Novikov S.P. (1984) Modern Geometry- Methods and Applications Part I. Springer-Verlag, New York

    MATH  Google Scholar 

  6. Ekh M., Runesson K. (2001) Modeling and numerical issues in hyperelasticplasticity with anisotropy. International Journal of Solids and Structures 38: 9461–9478

    Article  MATH  Google Scholar 

  7. Gasser T.C., Holzapfel G.A. (2002) A rate-independent elastoplastic constitutive model for (biological) fiberreinforced composites at finite strains: Continuum basis, algorithmic formulation and finite element implementation. Computational Mechanics, to appear

    Google Scholar 

  8. Haupt P., Kersten Th. (2002) On the modelling of anisotropic material behaviour in viscoplasticity. Int. J. Plasticity, submitted

    Google Scholar 

  9. Hill, R. (1948) A theory of yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society A 193: 281–297.

    Article  MATH  Google Scholar 

  10. Kröner E. (1960) Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Archive for Rational Mechanics and Analysis 4: 273–334

    Article  MathSciNet  MATH  Google Scholar 

  11. Lee E.H. (1969) Elastic-plastic deformation at finite strains. ASME Journal of Applied Mechanics 36: 1–6

    Article  MATH  Google Scholar 

  12. Menzel A., Steinmann P. (2002) On spatial formulation of anisotropic multiplicative elasto-plasticity, preprint

    Google Scholar 

  13. Papadopoulos P., Lu J. (2001) On the formulation and numerical solution of problems in anisotropic finite plasticty. Comp. Meth. Appl. Mech. Engrg. 190: 4889–4910

    Article  MATH  Google Scholar 

  14. Reese S. (2002) Meso-macro modelling of fibre-reinforced rubber-like composites exhibiting large elastoplastic deformations. Int. J. of Solids and Structures, to appear

    Google Scholar 

  15. Sansour C., Kollmann F.G. (1997) On theory and numerics of large viscoplastic deformation. Computer Methods in Applied Mechanics and Engineering 146: 351–369

    Article  MATH  Google Scholar 

  16. Sansour C., Kollmann F.G. (1998) Large viscoplastic deformations of shells. Theory and finite element formulation. Computational Mechanics 21: 512–525

    Article  MATH  Google Scholar 

  17. Sansour C., Kollmann F.G. (2001) Anisotropic formulations for finite strain viscoplasticity. Applications to shells, in: Wall W.A., Bletzinger K.-U., Schweizerhof K. (Eds.) Trends in Computational Structural Mechanics, CIMNE, Barcelona, 198–207

    Google Scholar 

  18. Sansour C., Kollmann F.G. (2002) On the formulation of anisotropic elastic laws within multiplicative finite strain viscoplasticity, submitted

    Google Scholar 

  19. Sansour C., Wagner W. (2001) A model of finite strain viscoplasticity based on unified constitutive equations. Theoretical and computational considerations with applications to shells. Computer Methods in Applied Mechanics and Engineering 191: 423–450

    Article  MATH  Google Scholar 

  20. Smith G.F. (1971) On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. International Journal of Engineering Science 9: 899–916

    Article  MathSciNet  MATH  Google Scholar 

  21. Spencer AJM. (1971) Theory of invariants. In: Continuum Physics Vol.I C. Eringen (Ed.). Academic Press, New York 239–353

    Google Scholar 

  22. Svendsen B. (2001) On the modelling of anisotropic elastic and inelastic material behaviour at large deformation. International Journal of Solids and Structures 38: 9579–9599

    Article  MATH  Google Scholar 

  23. Tsakmakis C. (1996) Kinematic hardening rules in finite plasticity, part i: a constitutive approach. Continuum Mechanics Thermodynam. 8: 215–231

    Article  MATH  Google Scholar 

  24. Tsakmakis Ch. (2001) Description of plastic anisotropy effects at large deformations. Part I: Restrictions imposed by the second law and the postulate of Il’iushin, preprint.

    Google Scholar 

  25. Xiao H., Bruhns O.T., Meyers A. (2000) A consistent finite elastoplasticity theory combining additive and multiplicative decomposition of the stretching and the deformation gradient. Int. J. Plasticity 16: 143–177

    Article  MATH  Google Scholar 

  26. Zheng Q-S. (1994) Theory of representations for tensor functions- A unified invariant approach to constitutive equations. Applied Mechanics Reviews 47: 545–587

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sansour, C., Kollmann, F.G., Bocko, J. (2003). A Model of Finite Strain Viscoplasticity with an Anisotropic Elastic Constitutive Law. In: Hutter, K., Baaser, H. (eds) Deformation and Failure in Metallic Materials. Lecture Notes in Applied and Computational Mechanics, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36564-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36564-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05649-9

  • Online ISBN: 978-3-540-36564-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics