Skip to main content

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 12))

Abstract

We consider the procedure of computing the response of a coupled problem with a partitioned approach. Often we have existing procedures or even software to solve each sub-problem separately, and want to couple both. This setting seems to allow only the so-called weak coupling which is not sufficient for some problems. The so-called strong coupling — a totally implicit formulation — requires iteration in each time step. With the partitioned approach, one simple computational procedure is similar to a block-Gauss-Seidel iteration. We show why this approach may experience difficulties, and how they may be circumvented with block-Newton methods, still in the partitioned framework, by only using the solvers for the two sub-problems. We supply some examples from fluid-structure coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morand H., Ohayon R. (1995) Fluid-Structure Interaction. John Wiley & Sons, Chichester

    Google Scholar 

  2. Belytschko T.,Mullen R. (1981) Two-dimensional fluid-structure impact computations with regularization. Comp. Meth. Appl. Mech. Eng. 27, 139–154

    Article  MATH  Google Scholar 

  3. Kennedy J. M., Belytschko T. (1982) A survey of computational methods for fluid-structure analysis of reactor safety. Nuclear Engineering and Design 69, 379–398

    Article  Google Scholar 

  4. Donea J., Giuliani S., Halleux J. P., (1982) An arbitrary Lagrangian-Eulerian finite element method for transient fluid-structure interaction. Comp. Meth. Appl. Mech. Eng. 33, 689–723

    Article  MATH  Google Scholar 

  5. Bathe K.-J., Zhang H., Wang M. H. (1995) Finite element analysis of incompressible and compressible fluid flows with free surfaces and structural interactions. Computers & Structures 56, 193–213

    Article  MATH  Google Scholar 

  6. Piperno S., Farhat C., Larrouturou B. (1995) Partitioned procedures for the transient solution of coupled aeroelastic problems. Comp. Meth. Appl. Mech. Eng. 124, 79–112

    Article  MATH  MathSciNet  Google Scholar 

  7. Mouro, J., Le Tallec, P. (1998) Fluid Structure Interaction with Large Structural Displacements. Preprint submitted to Elsevier Science

    Google Scholar 

  8. Farhat C. (1997) Parallel and distributed solution of coupled nonlinear dynamic aeroelastic response. In: Papadrakakis M. (ed.) Parallel Solution Methods in Computational Mechanics. John Wiley & Sons, Chichester

    Google Scholar 

  9. Rifai S., Johan Z., Wang W.-P., Grisval J.-P., Hughes T. J. R., Ferencz M. (1999) Multiphysics simulation of flow induced vibrations and aeroelasticity on parallel computing platforms. Comp. Meth. Appl. Mech. Eng. 174, 393–417

    Article  MATH  MathSciNet  Google Scholar 

  10. Bathe K.-J., Zhang H., Ji S. H. (1999) Finite element analysis of fluid flows fully coupled with structural interactions. Computers & Structures 72, 1–16

    Article  MATH  Google Scholar 

  11. Zienkiewicz O. C., Taylor R. L., (2001) The Finite Element Method. Vol. 1-3. Butterworth Heinemann, London

    Google Scholar 

  12. Argyris J., Doltsinis I. S., Pimenta P., Wüstenberg H. (1982) Thermomechanical response of solids at high strains natural approach. Comp. Meth. Appl. Mech. Eng. 32, 3–57

    Article  MATH  Google Scholar 

  13. Zienkiewicz O. C., Paul D. K., Chan A. H. C. (1988) Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems. Int. J. Num. Meth. Eng. 26, 1039–1055

    Article  MATH  Google Scholar 

  14. Park K. C., Felippa C. A. (1983) Partitioned analysis of coupled systems. In: Belytschko T., Hughes T. J. R. (eds.) Computational Methods in Transient Analysis. North-Holland, Amsterdam

    Google Scholar 

  15. Park K. C., Felippa C. A. (1984) Recent developments in coupled field analysis methods. In: Lewis R. W., Bettes P., Hinton E. (eds.) Numerical Methods in Coupled Systems. John Wiley & Sons, Chichester

    Google Scholar 

  16. Zienkiewicz O. C. (1984) Coupled problems and their numerical solution. In: Lewis R. W., Bettes P., Hinton E. (eds.) Numerical Methods in Coupled Systems. John Wiley & Sons, Chichester

    Google Scholar 

  17. Zienkiewicz O. C., Chan A. H. C. (1989) Coupled problems and their numerical solution. In: Doltsinis I. S. (ed.) Advances in Computational Nonlinear Mechanics. Springer, Berlin

    Google Scholar 

  18. Blom F. J. (1998) A monolithical fluid-structure interaction algorithm applied to the piston problem. Comp. Meth. Appl. Mech. Eng. 167, 369–391

    Article  MATH  MathSciNet  Google Scholar 

  19. Rugonyi S., Bathe K.-J. (2000) On the analysis of fully-coupled fluid flows with structural interactions — a coupling and condensation procedure. Int. J. of Comp. Civil and Struct. Eng. 1, 29–41

    Google Scholar 

  20. Felippa C. A., Park K. C. (1980) Staggered transient analysis procedures for coupled mechanical systems: formulation. Comp. Meth. Appl. Mech. Eng. 24, 61–111

    Article  MATH  Google Scholar 

  21. Park K. C. (1980) Partitioned transient analysis procedures for coupled-field problems: stability analysis. J. Appl. Mech. 47, 370–376

    Article  MATH  Google Scholar 

  22. Piperno S. (1997) Explicit/implicit fluid-structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations. Int. J. Num. Meth. Fluids 25, 1207–1226

    Article  MATH  MathSciNet  Google Scholar 

  23. Mok D. P., Wall W. A. (2001) Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures. In: Wall W. A., Bletzinger K.-U., Schweizerhof K. (eds.) Trends in Computational Structural Mechanics. CIMNE, Barcelona

    Google Scholar 

  24. Steindorf J., Matthies H. G. (1999) Efficient partitioned methods for the computation of fluid-structure interaction on parallel computers. In: Topping B. H. V. (ed.) Proceedings of the Third Euro-Conference on Parallel and Distributed Computing for Computational Mechanics. Civil-Comp Press, Edinburgh

    Google Scholar 

  25. Steindorf J. (2002) Partitionierte Verfahren für Probleme der Fluid-Struktur Wechselwirkung, PhD thesis; Technische Universität Braunschweig.

    Google Scholar 

  26. Codina R., Cervera M. (1996) Block-iterative algorithms for nonlinear coupled problems. In: Papadrakakis M., Bugeda G. (eds.) Advanced Computational Methods in Structural mechanics. CIMNE, Barcelona

    Google Scholar 

  27. Arnold M., Günther M. (2001) Preconditioned dynamic iteration for coupled differential-algebraic systems. BIT Numerical Mathematics 41, 1–25

    Article  MATH  MathSciNet  Google Scholar 

  28. Matthies H. G., Steindorf J. Efficient iteration schemes for non-linear fluid-structure interaction problems. In: Topping B. H. V. (ed.) Computational Mechanics: Techniques and Developments. Civil-Comp Press, Edinburgh

    Google Scholar 

  29. Matthies H. G., Steindorf J. (2001) How to make weak couplings strong. In: Bathe K.-J. (ed.) Computational Fluid and Solid Mechanics. Elsevier, Amsterdam

    Google Scholar 

  30. Matthies H. G., Steindorf J. (2002) Fully coupled fluid-structure interaction using weak coupling. Proc. in Appl. Math. and Mech. 1 (1), 37–38

    Article  MATH  Google Scholar 

  31. Matthies H. G., Steindorf J. (2002) Partitioned Strong Coupling Algorithms for Fluid-Structure-Interaction. submitted to Computers & Structures

    Google Scholar 

  32. Artlich S., Mackens W. (1995) Newton-coupling of fixed point iterations. In: Hackbusch W., Wittum G. (eds.) Numerical Treatment of Coupled Systems. Vieweg, Braunschweig

    Google Scholar 

  33. Mackens W., Menck J., Voss H. (1998) Numerical system synthesis: Concepts for coupling subsystem solvers. Technical Report, Technische Universität Hamburg-Harburg

    Google Scholar 

  34. Mackens W., Menck J., Voss H. (1999) Numerical coupling of subsystems. Zeitschr. für Angew. Math. and Mech. 79 (53), S871 - S872

    Google Scholar 

  35. Arnold M. (2000) Constraint partitioning in dynamic iteration methods. submitted to Zeitschr. für Angew. Math. and Mech.

    Google Scholar 

  36. Smith B., Bjorstad P., Gropp W. (1996) Domain Decomposition. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  37. Burrage K. (1995) Parallel and Sequential Methods for Ordinary Differential Equations. Clarendon Press, Oxford

    MATH  Google Scholar 

  38. Chan T. F. (1985) An approximate Newton method for coupled nonlinear systems. SIAM J. Numer. Anal. 22 (5), 904–913

    Article  MATH  MathSciNet  Google Scholar 

  39. Miekkala U., Nevanlinna O. (1987) An approximate Newton method for coupled nonlinear systems. SIAM J. Sci. Stat. Comput. 8, 459–482

    Article  MATH  MathSciNet  Google Scholar 

  40. Farhat C., Lesoinne M. (2000) Two efficient staggered algorithms for the serial and parallel solution of three-dimensional transient aeroelastic problems. Comp. Meth. Appl. Mech. Eng. 182, 499–515

    Article  MATH  MathSciNet  Google Scholar 

  41. Farhat C., Park K. C., Dubois-Pelerin Y. (1991) An uncoditionally stable staggered algorithm for transient finite element analysis of coupled thermoelastic problems. Comp. Meth. Appl. Mech. Eng. 85, 349–365

    Article  MATH  Google Scholar 

  42. Donea J. (1983) Arbitrary Lagrangian-Eulerian finite element methods. In: Belytschko T., Hughes T. J. R. (eds.) Computational Methods in Transient Analysis. North-Holland, Amsterdam

    Google Scholar 

  43. Wall W. A., Ramm E (1998) Fluid-structure interaction based upon a stabilized (ALE) finite element method. In: Proceedings of the.4th World Congress on Computational Mechanics — New Trends and Applications. CIMNE, Barcelona

    Google Scholar 

  44. Bathe K.-J. (1996) Finite Element Procedures. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  45. Ferziger J. H., Peric M. (1996) Computational Methods for Fluid Dynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  46. Thomas P. D., Lombard C. K. (1979) Geometric conservation law and its application to flow computations on moving grids. AIAA Journal 17 (10), 1030–1037

    Article  MATH  MathSciNet  Google Scholar 

  47. Dubini G., Pietrabissi R., Montevecchi F. M. (1995) Fluid-structure interaction in bio-fluid mechanics. Med. Eng. Phys. 17 (2), 609–617.

    Article  Google Scholar 

  48. Grandmont C., Guimet V., Maday Y. (1997) Numerical analysis of some de-coupling techniques for the approximation of the unsteady fluid-structure interaction. In: Proceedings of the Second European Conference on Numerical Mathematics. Heidelberg

    Google Scholar 

  49. Batina J. T. (1990) Unsteady Euler airfoil solutions using unstructured dynamic meshes. AIAA Journal 28 (8), 1381–1388

    Article  Google Scholar 

  50. Cebral J. R., Löhner R. (1997) Conservative load projection and tracking for fluid-structure problems. AIAA Journal 35 (4), 687–692

    Article  MATH  Google Scholar 

  51. Farhat C., Lesoinne M., Le Tallec P. (1998) Load and motion transfer algorithms for fluid-structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. Comp. Meth. Appl. Mech. Eng. 157, 95–114

    Article  MATH  MathSciNet  Google Scholar 

  52. Maman N., Farhat C. (1995) Matching fluid and structure meshes for aeroelastic computations: a parallel approach. Computers & Structures 54, 779–785

    Article  Google Scholar 

  53. Wohlmuth B. (2001) Discretization Methods and Iterative Solvers Based on Domain Decomposition. Lect. Notes in Computational Science and Engrg., Springer, Berlin

    Google Scholar 

  54. Le Tallec P., Mani S. (1999) Conservation laws for fluid-structure interactions. Technical Report CEREMADE, Université de Paris Dauphine

    Google Scholar 

  55. Belytschko T., Mullen R. (1978) Stability of explicit-implicit mesh partitions in time integration. Int. J. Num. Meth. Eng. 12, 1575–1586

    Article  MATH  Google Scholar 

  56. Farhat C., Lesoinne M., Maman N. (1995) Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation law and distributed solution. Int. J. Num. Meth. Fluids 21, 807835

    Article  MATH  MathSciNet  Google Scholar 

  57. Farhat C., Lesoinne M., Stern P. (1997) High performance solution of three-dimensional nonlinear elastic problems via parallel parttitoned algorithms: methodolgy and preliminary results. Adv. in Engrg. Software 28, 43–61

    Article  Google Scholar 

  58. Taylor R. L. (1998) FEAP — A Finite Element Analysis Program, User Manual Version 6. 3; Dept. of Civil and Environmental Engrg., University of California at Berkeley, CA

    Google Scholar 

  59. Turek S., Becker C. (1999) FEATFLOW User Manual Release 1. 2; Institut für Angewandte Mathematik, Universität Heidelberg

    Google Scholar 

  60. Turek S., (1999) Efficient Solvers for Incompressible Flow Problems: An Algorithmic Approach in View of Computational Aspects. Lect. Notes in Computational Science and Engrg. Vol. 6. Springer, Berlin

    Google Scholar 

  61. Munch M. (1998) GRISSLi Kopplungsinterface, Handbuch für die Anwendungsprogrammierung. IBM High Performance Support Center, Heidelberg; Institut für Algorithmen und Wissenschaftliches Rechnen der GMD, St. Augustin; Institut für Parallele und Verteilte Höchstleistungsrechner, Universität Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Matthies, H.G., Steindorf, J. (2003). Strong Coupling Methods. In: Wendland, W., Efendiev, M. (eds) Analysis and Simulation of Multifield Problems. Lecture Notes in Applied and Computational Mechanics, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36527-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36527-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05633-8

  • Online ISBN: 978-3-540-36527-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics