Skip to main content

Computational Homogenization of Materials with Microstructures Based on Incremental Variational Formulations

  • Conference paper
Analysis and Simulation of Multifield Problems

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 12))

  • 603 Accesses

Abstract

The paper presents incremental minimization principles for the broad class of standard dissipative materials at finite strains. Starting with a minimization principle for the local constitutive material response we define a minimization problem for the incremental boundaryvalue problem of standard dissipative solids. The existence of this principle allows the determination of micro-structure developments in non-stable dissipative materials based on a convexification analysis. Finally, we propose a minimization principle for the boundary-value problem of homogenization in heterogeneous microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball J.M. (1977) Convexity Conditions and Existence Theorems in Nonlinear Elasticity. Archive of Rational Mechanics and Analysis 63: 337 - 403

    Article  MATH  Google Scholar 

  2. Biot M.A. (1965) Mechanics of Incremental Deformations. John Wiley and Sons, New York

    Google Scholar 

  3. Bronkhorst C.A., Kalidindi S.R., Anand L. (1992) Polycrystalline Plasticity and the Evolution of Crystallographic Texture in f.c.c. Metals. Philosophical Transactions Royal Society London A 341: 443-477

    Google Scholar 

  4. Carstensen C., Hackl K., Mielke A. (2002) Nonconvex potentials and microstructures in finite-strain plasticity. Royal Society London, Proc. Ser. A 458: 299-317

    Article  MathSciNet  MATH  Google Scholar 

  5. Dacorogna B. (1989) Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  6. Halphen B., Nguyen Q.S. (1975) Sur les Matériaux Standards Généralisés. Journal de Mécanique 40: 39 - 63

    Google Scholar 

  7. Hill R. (1972) On Constitutive Macro-Variables for Heterogeneous Solids at Finite Strain. Proceedings of the Royal Society London A 326: 131 - 147

    Article  MATH  Google Scholar 

  8. Kohn R.V., Strang G. (1983) Explicit Relaxation of a Variational Problem in Optimal Design. Bulletin of the American Mathematical Society 9: 211 - 214

    Article  MathSciNet  MATH  Google Scholar 

  9. Martin J.B. (1975) Plasticity. Fundamentals and General Results. MIT press, Cambridge, Massachusetts

    Google Scholar 

  10. Miehe C. (2002) Strain-Driven Homogenization of Inelastic Microstructures and Composites Based on an Incremental Variational Formulation. International Journal for Numerical Methods in Engineering 55: 1285 - 1322

    Article  MathSciNet  MATH  Google Scholar 

  11. Miehe C., Schröder J., Schotte J. (1999) Computational Homogenization Analysis in Finite Plasticity. Simulation of Texture Development in Polycrystalline Materials. Computer Methods in Applied Mechanics and Engineering 171: 387-418

    Article  MathSciNet  MATH  Google Scholar 

  12. Miehe C., Schröder J., Becker M. (2002) Computational Homogenization Analysis in Finite Elasticity. Material and Structural Instabilities on the Micro-and Macro-Scales of Periodic Composites and their Interaction. Computer Methods in Applied Mechanics and Engineering 191: 4971-5005

    Article  MathSciNet  MATH  Google Scholar 

  13. Miehe C., Schotte J., Lambrecht M. (2002) Homogenization of Inelastic Solid Materials at Finite Strains Based on Incremental Minimization Principles. Journal of the Mechanics and Physics of Solids 50: 2123 - 2167

    Article  MathSciNet  MATH  Google Scholar 

  14. Miehe C, Lambrecht M. (2000) Analysis of Microstructure Development in Shearbands by Energy Relaxation of Incremental Stress Potentials: Large-Strain Theory for Generalized Standard Solids. International Journal for Numerical Methods in Engineering, in press

    Google Scholar 

  15. Miehe C., Lambrecht M., Gürses E. (2002) Analysis of Material Instabilities of Inelastic Solids based on Incremental Variational and Relaxation Methods: Application to Single-Slip Crystal Plasticity. Journal of the Mechanics and Physics of Solids, submitted

    Google Scholar 

  16. Mielke A. (2002) Finite elastoplasticity, Lie Groups and geodesics on SL(d). In: Newton P., Weinstein A., Holmes P. (Eds.), Mielke A, 61 - 90, Springer-Verlag

    Google Scholar 

  17. Moreau J.J. (1976) Application of Convex Analysis to the Treatment of Elastoplastic Systems. In: Germain P., Nayroles B. (Eds.), Application of Methods of Functional Analysis to Problems in Mechanics. Springer-Verlag, Berlin

    Google Scholar 

  18. Morrey C.B. (1952) Quasiconvexity and the Semicontinuity of Multiple Integrands. Pacific Journal of Mathematics 2: 25 - 53

    MathSciNet  MATH  Google Scholar 

  19. Müller S. (1987) Homogenization of Nonconvex Integral Functionals and Cellular Elastic Materials. Archive of Rational Mechanics and Analysis 99: 189 - 212

    Article  MATH  Google Scholar 

  20. Müller S. (1999) Variational models for microstructure and phase transitions. In: Bethuel F., Huisken G., Müller S., Steffen K., Hildebrandt S., Struwe M. (Eds.), Lectures given at the 2nd Session of the Centro Internazionale Matematico Estivo held in Cetaro, Italy, June 15-22, 1996, Springer, Berlin

    Google Scholar 

  21. Nguyen Q.S. (2000) Stability and Nonlinear Solid Mechanics. Wiley and Sons, Chichester

    Google Scholar 

  22. Ortiz M., Repetto E.A. (1999) Nonconvex Energy Minimization and Dislocation Structures in Ductile Single Crystals. Journal of the Mechanics and Physics of Solids 47: 397 - 462

    Article  MathSciNet  MATH  Google Scholar 

  23. Ortiz M., Repetto E.A., Stainier L. (2000) A Theory of Subgrain Dislocation Structures. Journal of the Mechanics and Physics of Solids 48: 2077 - 2114

    Article  MathSciNet  MATH  Google Scholar 

  24. Ponte Castaneda P., Suquet P. (1998) Nonlinear Composites. Advances in Applied Mechanics 34: 171 - 303

    Google Scholar 

  25. Ziegler H. (1963) Some Extremum Principles in Irreversible Thermodynamics with Application to Continuum Mechanics. In: Sneddon I.N., Hill R. (Eds.), Progress in Solid Mechanics I V. North-Holland Publishing, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miehe, C., Lambrecht, M., Schotte, J. (2003). Computational Homogenization of Materials with Microstructures Based on Incremental Variational Formulations. In: Wendland, W., Efendiev, M. (eds) Analysis and Simulation of Multifield Problems. Lecture Notes in Applied and Computational Mechanics, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36527-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36527-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05633-8

  • Online ISBN: 978-3-540-36527-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics