Skip to main content

Multiple Objective Decision Making in Past, Present, and Future

  • Conference paper
Multi-Objective Programming and Goal Programming

Part of the book series: Advances in Soft Computing ((AINSC,volume 21))

  • 1131 Accesses

Abstract

Since Kuhn and Tucker (1951) originally proposed the concept of proper noninferior solution solving nonlinear programming problems and it was later modified by Geoffrion (1967), Yu (1973) further introduce compromise solution method to cope with multicriteria decision-making problems. In addition, Charnes (1955) presented goal programming method, and Gellman and Zadeh (1970) proposed the concepts of decision-making in fuzzy environment, many distinguished work guide person study in this field. This paper review some methods concerning basic mathematical concepts of models applied on multiple objective decision making problem including fuzzy multiobjective linear programming (FMOLP), fuzzy goal programming (FGP), two-phase method, achievement function, data envelopment analysis(DEA), and De Novo Programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Banker, R.D., Charnes, A., and Cooper, W.W. (1984). “Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis”, Management Science, 30 (7). 1078–1092.

    Article  MATH  Google Scholar 

  2. Bellman, R.E., and Zadeh, L.A. (1970). “Decision-Making in a Fuzzy Environment”, Management Science, B17 (1), 141–164.

    MathSciNet  Google Scholar 

  3. Chames, A., and Cooper, W.W. (1961) Management Models and Industrial Applications of Linear Programming, John Wiley and Sons, New York.

    Google Scholar 

  4. Charnes, A., Cooper, W.W., and Ferguson, R. (1955). “Optimal Estimation of Executive Compensation by Linear Programming”, Management Science, 1 (1), 138–151.

    Article  MathSciNet  MATH  Google Scholar 

  5. Charnes, A., Cooper, W.W., and Rhodes, E. (1978). “Measuring the Efficiency of Decision Making Units”, European Journal of Operational Research, 2 (3), 429–444.

    Article  MathSciNet  MATH  Google Scholar 

  6. Chiang, C.I., and Tzeng, G.H. (2000). “A Multiple Objective Programming Approach to Data Envelopment Analysis”, Shi, Y. and Zeleny, M. (eds) New Frontiers of Decision Making for the Information Technology Era, World Science Publishing Company, 270–285

    Google Scholar 

  7. Flavell, R.B. (1976). “A New Goal Programming Formulation”, Omega, 4 (4), 731–732.

    Article  Google Scholar 

  8. Geoffrion, A.M. (1967). “Solving Bicriteria Mathematical Programs”, Operations Research, 15 (1), 39–54.

    Article  MathSciNet  MATH  Google Scholar 

  9. Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning, Springer-Verlag, Addison-Wesley Publishing Company, Inc.

    Google Scholar 

  10. Hwang, C.L., and Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications, Springer-Verlag, Heidelberg.

    Book  MATH  Google Scholar 

  11. Ida, K., and Gen, M., (1997). “Improvement of Two-Phase Approach for Solving Fuzzy Multiple Objective Linear Programming” Journal of Japan Societyfor Fuzzy Theory and System, 19 (1), 115–121.

    MathSciNet  Google Scholar 

  12. Ignizio, J.P. (1976) Goal Programming and Extensions, Heath, Lexington, MA.

    Google Scholar 

  13. Ijiri,Y., (1965). Management Goals and Accounting for Control, North-Holland, Amsterdam.

    Google Scholar 

  14. Kuhn, H.W., and Tucker, A.W. (1951). “Nonlinear Programming”, Proceedings of the second Berkeley Symposium on Mathematical Statistics and Probability, 481–492. J. Neyman (Ed.), University of California Press, Berkeley.

    Google Scholar 

  15. Lai, Y.J., Liu, T.Y., and Hwang, C.L. (1994). “TOPSIS for MODM”, European Journal of Operational Research, 76 (3), 486–500.

    Article  MATH  Google Scholar 

  16. Lee, S. (1972). Goal Programming for Decision Analysis, Auerbach, PA.

    Google Scholar 

  17. Lee, E.S., and Li, R.J. (1993) “Fuzzy Multiple Objective Programming and Compromise Programming with Pareto Optimum”, Fuzzy Sets and Systems, 53 (2), 275–288.

    MathSciNet  MATH  Google Scholar 

  18. Martinson, F.K., (1993). “Fuzzy vs. Min-Max Weighted Multiobjective Linear Programming Illustrative Comparisons,” Decision Sciences, 24(5), 809824.

    Google Scholar 

  19. Ohta, H., and Yamaguchi, T. (1995). “Multi-Goal Programming including Fractional Goal in Consideration of Fuzzy Solutions”, Journal of Japan Society for Fuzzy Theory and System, 7 (7), 1221–1228.

    MathSciNet  Google Scholar 

  20. Romero, C., (1991). Handbook of Critical Issues in Goal Programming, Oxford Pergamon Press.

    Google Scholar 

  21. Romero, C. (2001) “Extended Lexicographic Goal Programming: A Unifying Approach” Omega, 29 (1), 63–71.

    Article  Google Scholar 

  22. Sakawa, M., (1983). “Interactive Computer Programs for Fuzzy Linear Programming with Multiple Objectives” International Journal of Man-Machine Studies, 18 (4), 489–503.

    Article  MATH  Google Scholar 

  23. Sakawa, M., (1984). “Interactive Fuzzy Goal Programming for Multiobjective Nonlinear Problems and Its Application to Water Quality Management” Control and Cybernetics, 13 (2), 217–228.

    MATH  Google Scholar 

  24. Sakawa, M. (1993). Fuzzy Sets and Interactive Multiobjective Optimization, Plenum Press, New York.

    Book  MATH  Google Scholar 

  25. Sakawa, M., Kato, K., Sundad, H., and Enda, Y., (1995). “An Interactive Fuzzy Satisfying Method for Multiobjective 0–1 Programming Problems through Revised Genetic Algorithms” Journal of Japan Society for Fuzzy Theory and System, 17 (2), 361–370.

    Google Scholar 

  26. Sakawa, M. and Yumine, T. (1983). “Interactive Fuzzy Decision Making for Multi-objective Linear Fractional Programming Problems”, Large Scale System, 5 (1), 105–114.

    MathSciNet  MATH  Google Scholar 

  27. Sakawa, M. and Yano, H. (1985). “Interactive Decision Making for Multi-objective Linear Fractional Programming Problems with Parameters”, Cybernetics and Systems: An International Journal, 16 (3), 377–394.

    MathSciNet  MATH  Google Scholar 

  28. Shi,Y. (1995). “Studies on Optimum-Path Ratios in Multi-Criteria De Novo Programming Problems”, Computers and Mathematics with Applications, 29 (5), 43–50.

    Article  MathSciNet  MATH  Google Scholar 

  29. hibano, T., Sakawa, M., and Obata H., (1996). “Interactive Decision Making for Multiobjective 0–1 Programming Problems with Fuzzy Parameters through Genetic Algorithms” Journal of Japan Society for Fuzzy Theory and System, 18 (6), 1144–1153.

    Google Scholar 

  30. Shih, H.S., Lai, Y.J., and Lee, E.S. (1996). “Fuzzy Approach for Multi-Level Mathematical Programming Problems” Computers and Operations Research, 23 (1), 73–91.

    Article  MathSciNet  MATH  Google Scholar 

  31. Shih, H.S., and Lee, E.S. (1999). “Fuzzy Multi-Level Minimum Cost Flow Problem” Fuzzy Sets and Systems, 107 (2), 159–176.

    Article  MathSciNet  MATH  Google Scholar 

  32. Tamiz, M., Jones, D.F., and El-Darzi, E. (1995). “A Review of Goal Programming and Its Applications” Annuals of Operations Research, 58 (1), 3953.

    MathSciNet  Google Scholar 

  33. Tamiz, M., Jones, D.F., and Romero, C. (1998). “Goal Programming for Decision Making: an Overview of the Current State-of-Art” European Journal of Operational Research, 111 (4), 569–581.

    Article  MATH  Google Scholar 

  34. Werners, B. (1987). “Interactive Multiple Objective Programming Subject to Flexible Constraints,” European Journal of Operational Research, 31(2), 342349.

    Google Scholar 

  35. Yu, P.L. (1973). “A Class of Solutions for Group Decision Problems”, Management Science, 19 (8), 936–946.

    Article  MATH  Google Scholar 

  36. Yu, P.L. (1985). Multiple Criteria Decision Making: Concepts, Techniques, and Extensions, Plenum, New York.

    Google Scholar 

  37. Zeleny, M. (1981). “A Case Study in Multiple Objective Design: De Novo Programming”, in Multiple Criteria Analysis, Operational Methods, P. Nijkamp and J. Spronk, Eds., Gower Publishing Co., Hampshire, 37–52.

    Google Scholar 

  38. Zeleny, M. (1986). “Optimal System Design with Multiple Criteria: De Novo Programming Approach”, Engineering Costs and Production Economics, 10 (1), 89–95.

    Article  MathSciNet  Google Scholar 

  39. Zeleny, M. (1995). “Trade-Offs-Free Management via De Novo Programming”, International Journal of Operations and Quantitative Management, 1 (1), 3–13.

    Google Scholar 

  40. Zimmermann, H.J. (1978). “Fuzzy Programming and Linear Programming with Several Objective Functions”, Fuzzy Sets and Systems, 1 (1), 45–55.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tzeng, GH. (2003). Multiple Objective Decision Making in Past, Present, and Future. In: Multi-Objective Programming and Goal Programming. Advances in Soft Computing, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36510-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36510-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00653-4

  • Online ISBN: 978-3-540-36510-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics