Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haase, W., F. Brandsma, E.E., Leschziner, M., Schwamborn, D., eds.: EUROVAL: A European Initiative on Validation of CFD-codes. Volume 42. Vieweg Verlag (1993)

    Google Scholar 

  2. Haase, W., Chaput, E., Elsholz, E., Leschziner, M., Müller, U., eds.: ECARP — European Compuational Aerodynamics Research Projects: Validation of CFDcodes and Assessment of Turbulence Models. Volume 58. Vieweg Verlag (1997)

    Google Scholar 

  3. Dervieux, A., Braza, M., Dussage, J.P., eds.: Computation and Comparison of Efficient Turbulence Models for Aeronautics — European Research Project ETMA. Volume 65. Vieweg Verlag (1998)

    Google Scholar 

  4. Meier, H., Kreplin, H., Laundhausser, A., Baumgarten, D.: Mean velocity distributions in three-dimensional boundary layers developing on a 1:6 prolate spheroid with natural transition. report DFVLR IB 222–4/A 10, DFVLR, Göttingen (1984)

    Google Scholar 

  5. Kreplin, H., Vollmers, H., Meier, H.: Wall shear stress measurements on an inclined prolate spheroid in the DFVLR 3mx3m low speed wind tunnel. report DFVLR IB 222–84/A 33, DFVLR, Göttingen (1985)

    Google Scholar 

  6. Vollmers, H., Kreplin, H.,, Meiera, H., Kühn, A.: Measured mean velocity field around a prolate spheroid at various cross sections. report DFVLR IB 221–85/A 08, DFVLR, Göttingen (1985)

    Google Scholar 

  7. Huddeville, R., Piccin, O., Cassoudesalle, D.: Opération décrochage - mesure-ment de frottement sur profiles AS 239 et A 240 à la soufflerie F1 du CFM. Technical Report RT—OA 19/5025 (RT-DERAT 19/5025 DN), ONERA (1987)

    Google Scholar 

  8. Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics 177 (1987) 133–166

    Article  MATH  Google Scholar 

  9. th ERCOFTAC/IAHR/COST Workshop on Refined Flow Modelling. In: June 6–7, University of Karlsruhe, Karlsruhe. (1995)

    Google Scholar 

  10. Almeida, M., Durau, D., Heitor, M.: Wake flows behind two-dimensional hills. Exp. Thermal and Fluid Science 7 (1993) 87

    Article  Google Scholar 

  11. Hanjalic, K., Obi, S., Hadziié, I.: 6th ERCOFTAC/IAHR/COST workshop on refined flow modelling: Wall-jets and flow over wall-mounted cubical obstacles. Report, ERCOFTAC Bullentin No. 36 (1998)

    Google Scholar 

  12. Archambeau, F., Leschziner, M.: Vortex shedding past square cylinder. In: Proc. Workshop on Large Eddy Simulation of Flows past Bluff Bodies, Tegernsee, Germany (1995)

    Google Scholar 

  13. Métais, O., Lesieur, M.: Spectral large-eddy simulation of isotropic and stably stratified turbulence. Journal of Fluid Mechanics 239 (1992) 157–194

    Article  MathSciNet  MATH  Google Scholar 

  14. Piomelli, U., Liu, J.: Large-eddy simulation of rotating channel flow using a localized dynamic model. Physics of Fluids A 7 (1995) 839–848

    Article  MATH  Google Scholar 

  15. Davidson, L.: Large eddy simulation: A dynamic one-equation subgrid model for three-dimensional recirculating flow. In: 11th Int. Symp. on Turbulent Shear Flow. Volume 3., Grenoble (1997) 26. 1–26. 6

    Google Scholar 

  16. Ducros, F., Nicoud, F., Poinsot, T.: Wall-adapting local eddy-viscosity models for simulations in complex geometries. In: 6th ICFD Conference on Numerical Methods for Fluid Dynamic. (1998) 293–299

    Google Scholar 

  17. Sagaut, P.: Simulation numérique d’écoulements décollés avec des modèles de sous-maille. PhD thesis, Paris VI, Paris (1995)

    Google Scholar 

  18. Werner, H., Wengle, H.: Large-eddy simulation of turbulent flow over and around a cube in a plane channel. In: Turbulent Shear Flows 8, Springer-Verlag (1991) 155–168

    Google Scholar 

  19. Moser, R., Kim, J., Mansour, N.: Direct numerical simulation of turbulent channel flow up to re, = 590. Physics of Fluids A 11 (1999) 943–945

    Article  MATH  Google Scholar 

  20. Mellen, C., Fröhlich, J., Rodi, W.: Karlruhe’s mid-term report, LESFOIL: A Brite-Euram project. Technical report, Institut für Hydrodynamik, University of Karlsruhe, Germany (1999)

    Google Scholar 

  21. Gough, T., Gao, S., Hancock, P., Voke, P.: Experiment and simulation of the tripped boundary layer on a flat plate: Comparative study. Technical Report ME-FD/95. 40, Department of Mechanical Engineering, The University of Surrey, U.K. (1996)

    Google Scholar 

  22. Nikiton, N., Nicoud, F., Wasistho, B., Squires, K., Spalart, P.: An approach to wall modeling in large-eddy simulations. Physics of Fluids A 12 (2000) 1629–1632

    Article  Google Scholar 

  23. Spalart, P., Jou, W.H., M.Strelets, Allmaras, S.: Comments on the feasability of LES for wings and on a hybrid RANS/LES approach. In Liu, C., Liu, Z., eds.: Advances in LES/DNS, First Int. conf. on DNS/LES, Louisiana Tech University, Greyden Press (1997)

    Google Scholar 

  24. Shur, M., Spalart, P., Strelets, M., Travin, A.: Detached-eddy simulation of an airfoil at high angle of attack. In Rodi, W., Laurence, D., eds.: Engineering Turbulence Modelling and Experiments 4, Elsevier (1999) 669–678

    Chapter  Google Scholar 

  25. Travin, A., Shur, M., Strelets, M., Spalart, P.: Detached-eddy simulations past a circular cylinder. Flow Turbulence and Combustion 63 (2000) 293–313

    Article  MATH  Google Scholar 

  26. Peng, S.H., Davidson, L., Holmberg, S.: A modified Low-Reynolds-Number k - w model for recirculating flows. ASME: Journal of Fluids Engineering 119 (1997) 867–875

    Article  Google Scholar 

  27. Yoshizawa, A.: Bridging between eddy-viscosity-type and second-order models using a two-scale DIA. In: 9th Int. Symp. on Turbulent Shear Flow. Volume 3., Kyoto (1993) 23.1.1–23. 1. 6

    Google Scholar 

  28. Fureby, C.: Large eddy simulation of rearward-facing step flow. AIAA Journal 37 (1999) 1401–1410

    Article  Google Scholar 

  29. Piomelli, U.: High Reynolds number calculations using the dynamic subgridscale stress model. Physics of Fluids A 5 (1993) 1484–1490

    Article  Google Scholar 

  30. Mellen, C., Fröhlich, J., Rodi, W.: Large eddy simulation of the flow over periodic hills. In: 16th IMACS World Congress 2000, Lausanne, August 21–25. (2000)

    Google Scholar 

  31. Smagorinsky, J.: General circulation experiments with the primitive equations. Monthly Weather Review 91 (1963) 99–165

    Article  Google Scholar 

  32. Temmerman, L., Leschziner, M., Mellen, C., Fröhlich, J.: Investigation of wall-function approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with streamwise periodic constrictions (submitted). Int. J. Heat and Fluid Flow (2002)

    Google Scholar 

  33. Mathey, F., Fröhlich, J., Rodi, W.: In preparation (2000)

    Google Scholar 

  34. Ternmerman, L., Leschziner, M.: Large eddy simulation of separated flow in a streamwise periodic channel constriction. In: The Second International Symp. on Turbulence and Shear Flow Phenomena. Volume 3., Stockholm (2001) 399–404

    Google Scholar 

  35. Cabot, W., Moin, P.: Approximate wall boundary conditions in the large eddy simulation of high Reynolds number flow. Flow, Turbulence and Combustion 63 (1999) 269–291

    Article  Google Scholar 

  36. Nilsson, H., Davidson, L.: CALC-PVM: A parallel multiblock SIMPLE multiblock solver for turbulent flow in complex domains. Rept. 98/12, Dept. of Thermo and Fluid Dynamics, Chalmers University of Technology, Gothenburg (1998)

    Google Scholar 

  37. FLUENT Newsletter: Collaboration with the Silicon Graphics Delivers Breakthrough Parallel Scaling for High-End CFD Computations. Volume 6: 2. (1997)

    Google Scholar 

  38. Davidson, L., Farhanieh, B.: CALC-BFC: A finite-volume code employing collocated variable arrangement and Cartesian velocity components for computation of fluid flow and heat transfer in complex three-dimensional geometries. Rept. 92/4, Dept. of Thermo and Fluid Dynamics, Chalmers University of Technology, Gothenburg (1992)

    Google Scholar 

  39. Nilsson, H.: A parallel multiblock extension to the CALC-BFC code using PVM. Rept. 97/11, Dept. of Thermo and Fluid Dynamics, Chalmers University of Technology, Gothenburg (1997)

    Google Scholar 

  40. Hellström, T., Davidson, L.: A multiblock-moving mesh extension to the calcbfc code. Rept. 93/3, Dept. of Thermo and Fluid Dynamics, Chalmers University of Technology, Gothenburg (1993)

    Google Scholar 

  41. Ferziger, J., Peric, M.: Computational Methods for Fluid Dynamics Springer-Verlag, Berlin (1996)

    Google Scholar 

  42. Mathur, S., Murthy, J.: Pressure-based method for unstructured methods. Numerical Heat Transfer. Part B 31 (1997) 195–216

    Article  Google Scholar 

  43. Prasad, R., S.E., K.: Cold flow simulations of a bluff-body flame stabiliser. Fluent Inc. (1998)

    Google Scholar 

  44. th ERCOFTAC/IAHR/COST Workshop on Refined Flow Modelling. In: June 6–7, Delft University of Technology, Delft, The Netherlands. (1997)

    Google Scholar 

  45. Martinuzzi, R., Tropea, C.: The flow around a surface-mounted prismatic obstacle placed in a fully developed channel flow. J. Fluid Engng. 115 (1993) 85–92

    Article  Google Scholar 

  46. Breuer, M.: LES of the flow past bluff body: Numerical and modelling aspects. In: DNS and LES of Complex Flows: Numerical and Modelling Aspects, Twente University, The Netherlands (1997) 14–21

    Google Scholar 

  47. Rhie, C., Chow, W.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal 21 (1983) 1525–1532

    Article  MATH  Google Scholar 

  48. Issa, R.: Solution of Implicitly Discretised Fluid Flow Equations by Operator-Splitting. J. Comp. Physics 62 (1986) 40–65

    Article  MathSciNet  MATH  Google Scholar 

  49. Yoshizawa, A.: Statistical theory for compressible shear flows with the application of subgrid modelling. Physics of Fluids A 29 (1986) 2152–2163

    Article  MATH  Google Scholar 

  50. Dahlström, S., Davidson, L.: Large eddy simulations of the flow around an Aerospatiale A—airfoil. Proceedings of ECCOMAS 2000, Barcelona, 11–14 September (2000)

    Google Scholar 

  51. Dahlström, S., Davidson, L.: Large eddy simulations of the flow around an airfoil. AIAA Paper 2001–0425, Reno (2001)

    Google Scholar 

  52. Davidson, L., Peng, S.H.: A hybrid LES—RANS model based on a one-equation SGS model and a two-equation k — w model. In Lindborg, E., Johansson, A., Eaton, J., Humphrey, J., Kasagi, N., Leschziner, M., Sommerfeld, M., eds.: The Second International Symp. on Turbulence and Shear Flow Phenomena. Volume 2., Stockholm (2001) 175–180

    Google Scholar 

  53. Arina, R., Ceresola, N., Piant, P.: Application of a two equations turbulence model to the numerical prediction of unsteady flow past an airfoil. In: Proc. 20th ICAS Congress. (1996)

    Google Scholar 

  54. Johansson, A., Wallin, S.: A new explicit algebraic Reynolds stress model. In: Advances in Turbulence VI, Netherlands, Kluwer Academic Publishers (1996) 31–34

    Chapter  Google Scholar 

  55. Spalart, P., Allmaras, S.: A one equation turbulence model for aerodynamic flows. AIAA paper 92–0439, Reno, NV (1992)

    Google Scholar 

  56. Weber, C., Ducros, F.: Large-eddy and Reynolds averaged Navier—Stokes simulations of turbulent flow over an airfoil. Int. J. Comput. Fluid Dyn. 13 (2000) 327–355

    Article  MathSciNet  MATH  Google Scholar 

  57. Weber, C.: Développement de méthodes implicites pour les équations de navier-stokes moyennées et la simulation des grandes échelles: application à l’aérodynamique externe. thèse, INPT, Toulouse, France (1998)

    Google Scholar 

  58. Weber, C., Ducros, F., Corjon, A.: Large-eddy simulation of complex turbulent flows. In: AIAA Paper 98–2651. (1998)

    Google Scholar 

  59. Ducros, F., Comte, P., Lesieur, M.: Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate. Journal of Fluid Mechanics 326 (1995) 1–36

    Google Scholar 

  60. Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion. 62 (1999) 183–200

    Article  MATH  Google Scholar 

  61. Caruelle, B.: Simulation d’ecoulements instationnaires turbulents en aérodynamique: application à la prédistion du phénomène de tremblement. thèse de l’INPT (2000)

    Google Scholar 

  62. Caruelle, B., Ducros, F.: Towards unsteady simulations of separation of boundary layer. in Proceedings of lth TSFP congress (Santa Barbara, 1999 ) pp. 1155–1160

    Google Scholar 

  63. Ducros, F., Soulères, C., Laporte, F., Moinat, P., Weber, C., Guinot, V.: High-order skew-symmetric Jameson schemes for unsteady compressible dlow. In: ERCOFTAC joint Workshop on Direct and Large-Eddy Simulation, Cambridge, May 12–14. (1999)

    Google Scholar 

  64. Chalot, F., Mallet, M., Ravachol, M.: A comprehensive finite element NavierStokes solver for low-and high-speed aircraft design. AIAA Paper 94–0814, Reno, Nevada (1994)

    Google Scholar 

  65. Hughes, T., Franca, L., Mallet, M.: A new finite element formulation for computational fluid dynamics: VI convergence analysis of the generalized SUPG formulation for linear time dependent multidimensional advective diffusive systems. Computer Methods in Applied Mechanics and Engineering 63 (1987) 97–112

    Article  MathSciNet  MATH  Google Scholar 

  66. Johan, Z., Hughes, T., Shakib, F.: A globally convergent matrix-free algorithm for implicit time-marching schemes arising in finite element analysis in fluids. Computer Methods in Applied Mechanics and Engineering 87 (1991) 281–304

    Article  MathSciNet  MATH  Google Scholar 

  67. Johnson, C.: Finite elements methods for flow problems. In: Proceedings in Agard report 787 for “Special course on unstructured grid method for advection dominated flows”. (1992)

    Google Scholar 

  68. Shakib, F.: Finite element analysis of the compressible Euler and Navier-Stokes equations. PhD thesis, Division of Applied Mechanics, Stanford University (1989)

    Google Scholar 

  69. Hughes, T., Mallet, M., Mizukami, A.: A new finite element formulation for computational fluid dynamics: II beyond SUPG. Computer Methods in Applied Mechanics and Engineering 54 (1986) 341–355

    Article  MathSciNet  MATH  Google Scholar 

  70. Johan, Z.: Data parallel finite element techniques for large-scale computational fluid dynamics. PhD thesis, Stanford University (1992)

    Google Scholar 

  71. Spalart, P., Allmaras, S.: A one—equation turbulence model for aerodynamic flows. La Recherche Aérospatiale 1 (1994) 5–21

    Google Scholar 

  72. Chen, H., Patel, V.: Near-wall turbulence models for complex flows including separation. AIAA Journal 26 (1988) 641–648

    Article  Google Scholar 

  73. Kasbarian, C.: Etude numérique pour les problèmes d’advection-diffusion — Application à la modélisation d’écoulements turbulents incompressibles. PhD thesis, Université de Lyon I (1995)

    Google Scholar 

  74. Marquez, B.: Simulation des Grandes Échelles d’Écoulements Compressibles par des Méthodes Éléments Finis. PhD thesis, Institut National Polytechnique de Toulouse (1999)

    Google Scholar 

  75. Weber, C.: Développement de méthodes implicites pour les équations de Navier-Stokes moyennées et à la simulation des grandes échelles: Application à l’aérodynamique externe. PhD thesis, Institut National Polytechnique de Toulouse (1998)

    Google Scholar 

  76. Cokljat, D.: LES of flow around A-Airfoil Part I - RANS results and initial les simulation, internal report, LESFOIL Project. Technical report, Fluent, Sheffield, UK (1999)

    Google Scholar 

  77. Zhu, J.: A low diffusive and oscillation-free convection scheme. Communications in Applied Numerical Methods 7 (1991) 225–232

    Article  MATH  Google Scholar 

  78. Davidson, L.: LESFOIL: A european project on large eddy simulations around a high-lift airfoil at high Reynolds number. In: ECCOMAS 2000, European Congress on Computational Methods in Applied Sciences and Engineering, 11–14 September, Barcelona, Spain (2000)

    Google Scholar 

  79. Péchier, M.: Prévision numériques de l’effet Magnus pour des configurations de munitions. PhD thesis, Thèse de l’université de Poitiers (1999)

    Google Scholar 

  80. Péchier, M., Guillen, P., Gayzac, R.: Magnus effect over finned projectiles. J. of Aircraft and Rockets 38 (2001) 542–549

    Google Scholar 

  81. Lenormand, E., Sagaut, P., Ta Phuoc, L., Comte, P.: Subgrid-scale models for large-eddy simulation of compressible wall bounded flows. AIAA J. 38 (2000) 1340–1350

    Article  Google Scholar 

  82. Lenormand, E., Sagaut, P., Ta Phuoc, L.: Large-eddy simulation of subsonic and supersonic channel flow at moderate reynolds number. Int. J. Numer. Meth. Fluids 32 (2000) 369–406

    Article  MATH  Google Scholar 

  83. David, E.: Modélisation numérique d’écoulements compressibles:une approche instationnaire. Thèse de docteur-ingénieur, INPG (1993)

    Google Scholar 

  84. Sagaut, P.: Large-eddy simulation of incompressible flows. An introduction. Springer-Verlag (2001)

    Google Scholar 

  85. J.P. Boris, F.F. Grinstein, E.O.E., Kolbe, R.: New insights into large eddy simulation. Fluid Dynam. Res. 10 (1992) 199

    Google Scholar 

  86. Edwards, J.R., Liou, M.S.: Low-diffusion flux-splitting methods for flows at all speeds. AIAA J. 36 (1998) 1610–1617

    Article  Google Scholar 

  87. Mary, I., Sagaut, P., Deville, M.: An algorithm for unsteady viscous flows at all speeds. Int. J. Numer. Meth. Fluids 34 (2000) 371–401

    Article  MATH  Google Scholar 

  88. Mary, I.: Méthode de Newton approchée pour le calcul d’écoulements instationnaires comportant des zones à très faibles nombres de Mach. PhD thesis, Thèse de l’université Parix XI Orsay (1999)

    Google Scholar 

  89. Ducros, F.: private communication (2000)

    Google Scholar 

  90. Gleyzes, C.: Opération décrochage - résultats de essais à la soufflerie F2. Technical Report RT-DERAT 55/4004, ONERA (1988)

    Google Scholar 

  91. Na, Y., Moin, P.: Direct numerical simulation of a separated turbulent boundary layer. Journal of Fluid Mechanics 374 (1998) 379–405

    Article  MathSciNet  MATH  Google Scholar 

  92. Alam, M., Sandham, N.: Direct numerical simulation of short laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 410 (2000) 1–28

    Article  MATH  Google Scholar 

  93. Sohankar, A., Norberg, C., Davidson, L.: Simulation of unsteady three-dimensional flow around a square cylinder at moderate Reynolds numbers. Physics of Fluids A11 (1999) 288–306

    Article  MATH  Google Scholar 

  94. Temmerman, L., Leschziner, M., Ashworth, M., Emerson, D.: Les applications on parallel systems. In: Proceedings of Parallel CFD 2000. (2000)

    Google Scholar 

  95. Pauley, L., Moin, P., Reynolds, W.: The structure of two-dimensional separation. J. Fluid Mech. 220 (1990) 397–411

    Article  Google Scholar 

  96. Dahlström, S., Davidson, L.: Chalmers 30-month report, LESFOIL: a BriteEuram project. Technical report, Chalmers, Goteborg, Sweden (2000)

    Google Scholar 

  97. Mellen, C., Fröhlich, J., Rodi, W.: Ifh 30-month report, LESFOIL: a BriteEuram project. Technical report, University of Karlsruhe, Karlsruhe, Germany (2000)

    Google Scholar 

  98. Werner, H., Wengle, H.: Large-eddy simulation of turbulent flow over and around a cube in a plane channel. In: Turbulent Shear Flows 8, Springer-Verlag (1991) 155–168

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Davidson, L., Cokljat, D., Fröhlich, J., Leschziner, M.A., Mellen, C., Rodi, W. (2003). References. In: Davidson, L., Cokljat, D., Fröhlich, J., Leschziner, M.A., Mellen, C., Rodi, W. (eds) LESFOIL: Large Eddy Simulation of Flow Around a High Lift Airfoil. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36457-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36457-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05605-5

  • Online ISBN: 978-3-540-36457-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics