Skip to main content

Some Fundamentals of Optical Thin Film Growth

  • Chapter
Optical Interference Coatings

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 88))

Abstract

Optical phenomena occur at surfaces and in thin films. However, unlike in microelectronics and opto-electronics, surface and thin film science is often hardly of any help in describing the basic processes taking place on optical surfaces. Optical surfaces are never of a well-defined single-crystalline or amorphous type, and the growth of optical films takes place under rather unclean and consequently undefined conditions. Our final interest is always optical, and there may also be an interest in the mechanical, thermal and electrical properties. The dependence of optical properties on thin film growth conditions is a severe constraint. There is a significant conflict between models based on ideal- and such based on real-structure films. This will be explained in Sect. 2. What we need is models that relate real film structure to desired optical properties. Such knowledge would allow the design and manufacture of coatings to be based on more realistic production conditions. Section 3 deals with aspects of thin film growth of variable dimensions, from isolated nanoclusters to continuous macroscopic films. The focus is on dielectric (Sect. 4) and metallic films (Sect. 5) and their optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aspnes DE (1982) Optical Properties of Thin Films. Thin Solid Films 89: 249–262

    Article  ADS  Google Scholar 

  • Barna A, Barna PB, Pocza FP (1988) Surface chemical phenomena influencing the growth ofthinfims. J Vac Sc Tec 6: 472–485

    Article  ADS  Google Scholar 

  • Barna PB, Adamik M (1995) Growth mechanisms of polycrystalline thin films, In: Matacotta, Ottaviani G (Eds) Science and Technology of Thin Films. World Scientific Publishing, Singapore, pp 1–28

    Chapter  Google Scholar 

  • Bauer E (1958) Wachstum diinner Schichten. Zeitschrift fur Kristallographie 110: 372–394

    Article  ADS  Google Scholar 

  • Bodemann A, Kaiser N, Raupach L, Weissbrodt P, Hacker E (1996) 248 nm laser interaction studies on LaF3/MgF2 optical coatings by mass spectroscopy and X-ray photoelec-tron spectroscopy. Proc SPIE 2714: 405–415

    Article  ADS  Google Scholar 

  • Czigany Z, Adamik M, Kaiser N (1998) 248 nm laser interaction studies on LaF3/MgF2 optical coatings by crosssectional transmission electron microscopy. Thin Solid Films 312: 182

    Article  Google Scholar 

  • Dannenberg R, Stach EA, Groza JR, Dresser BJ (2000) In-situ TEM observations of abnormal grain growth, coarsening, and substrate de-wetting in nanocrystalline Ag thin films. Thin Solid Films 370: 54

    Article  ADS  Google Scholar 

  • Duparré A (1995) Light Scattering of Thin Dielectric Films. In Hummel RE, Guenther KH (eds.) Handbook of Optical Properties, Volume I, Thin Films for Optical Coatings. CRC Press Boca Raton, London, Tokyo

    Google Scholar 

  • Ensinger W (1997) Low energy ion assist during deposition — an effective tool for controlling thin film microstructure. Nuclear Instruments and Methods in Physics Research B 127/128: 796–808

    Article  ADS  Google Scholar 

  • Eva E, Mann K, Kaiser N, Anton B, Henking R, Ristau D, Weissbrodt P, Mademann D, Raupach L, Hacker E. (1996) Laser conditioning of LaF3/MgF2 dielectric coatings at 248 nm. Applied Optics 35: 5613–5619

    Article  ADS  Google Scholar 

  • Fragstein C, Romer H (1958) Uber die Anomalie der optischen Konstanten. Zeitschrift fur Physik 151: 54

    Article  ADS  Google Scholar 

  • Glaser HJ (1999) Diinnfilmtechnologie auf Flachglas. Verlag Karl Hofmann, Schorndorf

    Google Scholar 

  • Grovenor CRM, Hentzell HTG, Smith DA (1984) The development of grain structure during growth of metallic films. Acta metal 32: 773–781

    Article  Google Scholar 

  • Guenther KH, Pulker HK (1976) Electron microscopical investigations of cross sections of optical thin films. Applied Optics 15: 2992–2997

    Article  ADS  Google Scholar 

  • Guenther KH, Smith DJ, Bangjun (1986) Structure and related properties of thin film optical coatings. Proc SPIE 678: 2

    Article  Google Scholar 

  • Hass G (1938) Struktur und Optik aufgedampfter Metallschichten. Annalen der Physik 31: 245

    Article  ADS  Google Scholar 

  • Heitmann W (1968) The influence of various parameters on the refractive index of evaporated dielectric thin films. Applied Optics 7: 1541–1543

    Article  ADS  Google Scholar 

  • Hill RJ, Nadel SJ (1999) Coated Glass Applications and Markets. BOC Coating Technology (1999)

    Google Scholar 

  • Hodgkinson I, Wu Q (1999) Birefringent Thin Film Polarizing Elements. World Scientific Singapore, New Jersey, London Hong Kong

    Google Scholar 

  • Hodgkinson I, Lakhtakia A, Wu Q (2000) Experimental realization of sculptured-thin-film polarization-dicriminatory light-handedness inverters. Optical Engineering 39: 2831–2834

    Article  ADS  Google Scholar 

  • Kaiser N (1984) Crystallization of amorphous antimony films. Thin Solid Films 116: 259–265

    Article  ADS  Google Scholar 

  • Kaiser U, Kaiser N, Weissbrodt P, Mademann D, Hacker E, Muller H (1992) Structure of thin fluoride films deposited on amorphous substrates. Thin Solid Films 217: 7–16

    Article  ADS  Google Scholar 

  • Kaiser U, Kaiser N (1994) C-adsorption behaviour of thin fluoride films. Thin Solid Films 237: 250–254

    Article  ADS  Google Scholar 

  • Kaiser N, Yulin S, Feigl T, Kuhlmann T (2000) Sibased multilayers with high thermal stability. Proc. SPIE 4146: 91–100

    Article  ADS  Google Scholar 

  • Kaiser N (2002) Review of the fundamentals of thin-film growth. Applied Optics 41: 3053–3060

    Article  ADS  Google Scholar 

  • Kinosita K, Nishibori M (1969) Porosity of MgF2 films evaluation based on changes in the refractive index due to adsorption of vapour. J Vac Sc Techn 6: 730–733

    Article  ADS  Google Scholar 

  • Koch H (1965) Optische Untersuchungen zur Wasserdampfsorption in Aufdampfschichten (insbesondere MgF2-Schichten). Phys Stat Sol 12: 533

    Article  ADS  Google Scholar 

  • Kozlowski MR, Chow R (1994) The role of defects in laser damage of multilayer coatings. Proc SPIE 2114: 640–649

    Article  ADS  Google Scholar 

  • Kreibig U, Vollmer M (1995) Optical Properties of Metal Clusters. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Kuhlmann T, Yulin S, Feigl T, Kaiser N, Gorelik T, Kaiser U, Richter W (2002) Chromium-scandium multilayer mirrors for the nitrogen K a line in the water window region. Applied Optics 41: 2048–2052

    Article  ADS  Google Scholar 

  • Lewis B, Anderson JC (1978) Nucleation and Growth of Thin Films. Academic Press (1978)

    Google Scholar 

  • Lissberger PH, Pearson JM (1976) The performance and structural properties of multilayer optical filters. Thin Solid Films 34: 349–355

    Article  ADS  Google Scholar 

  • Macleod HA (1981) Performance-limiting factors in optical coatings. Proc SPIE 288: 580

    Article  ADS  Google Scholar 

  • Macleod HA (1982) Microstructure of optical thin films. Proc SPIE 325: 21

    Article  Google Scholar 

  • Mademann D, Raupach L, Weissbrodt P, Hacker E, Kaiser U, Kaiser N (1993) Investigations of thin fluoride films for optical application by surface analytical methods and electron microscopy. Fresenius J of Anal Chem 346: 173–176

    Article  Google Scholar 

  • Mergel D, Buschendorf D, Eggert S, Grammes R, Samset B (2000) Density and refractive index of Ti02 films prepared by reactive evaporation. Thin Solid Films 371: 218–224

    Article  ADS  Google Scholar 

  • Mergel D (2001) Modelling Ti02 films of various densities as an effective optical medium. Thin Solid Films 397: 216–222

    Article  ADS  Google Scholar 

  • Messier R, Giri AP, Roy RA (1984) Revised structure zone model for thin film physical structure. J Vac Sci Technol A2(2): 500–503

    ADS  Google Scholar 

  • Monard H (1997) Optical properties of silver, gold and aluminium ultra thin granular films evaporated on oxidized aluminium. Thin Solid Films 310: 265–273

    Article  ADS  Google Scholar 

  • Movchan BA, Demchishin AV (1969), Phys Metal Metallogr 28: 83

    Google Scholar 

  • Ohring M (1992) The Material Science of Thin Films. Academic Press, Inc., Harcourt Brace Jovanovich, Publishers

    Google Scholar 

  • Pulker HK (1999) Coatings on Glass. Elsevier, Amsterdam

    Google Scholar 

  • Reichling M, Bodemann A, Kaiser N (1998) Defect induced laser damage in oxide multilayer coatings for 248 nm. Thin Solid Films 320: 264–279

    Article  ADS  Google Scholar 

  • Robbie K, Friedrich LJ, Dew SK, Smy T, Brett MJ (1995) J Vac Sci Technol A13: 1032

    ADS  Google Scholar 

  • Shaw-Klein LJ, Burns SJ, Jacobs SD (1993) Model for laser damage dependence on thin-film morphology. Applied Optics 32: 3925

    ADS  Google Scholar 

  • Sillanpää J, Koponen IT, Gronbech-Jensen N (2001) A rate-equation model for the growth of metallic thin films in ion beam assisted deposition. Nuclear Instruments and Methods in Physics Research B 184: 523–530

    Article  ADS  Google Scholar 

  • Stenzel O, Lebedev AN, Schreiber M, Zahn DRT (2000) Simulation of linear optical losses of absorbing heterogeneous thin solid films. Thin Solid Films 372: 200–208

    Article  ADS  Google Scholar 

  • Thanh VL, Yam VY, Zeng Y, Bouchier D (2000) Nucleation and growth of self-assembled Ge/Si (001) quantum dots in single and stacked layers. Thin Solid Films 380: 2–9

    Article  ADS  Google Scholar 

  • Thornton JA (1986) The microstructure of sputter-deposited coatings. J Vac Sci Technol A4(6): 3059

    ADS  Google Scholar 

  • Venables JA (2000) Introduction to Surface and Thin Film Processes. Cambridge University Press

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaiser, N. (2003). Some Fundamentals of Optical Thin Film Growth. In: Kaiser, N., Pulker, H.K. (eds) Optical Interference Coatings. Springer Series in Optical Sciences, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36386-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36386-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05570-6

  • Online ISBN: 978-3-540-36386-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics