Skip to main content

Photonic Structures as Interference Devices

  • Chapter
Optical Interference Coatings

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 88))

Abstract

Photonic crystals (PC) are based on scattering of electromagnetic waves in an inhomogeneous solid. Both in a basic physics perspective, and as a potential branch of technology it has a very close relationship to optical coatings, based on optical interference. Yet, PC’s do not appear to be on the agenda in the community of people involved in the development and production of interference coatings. The concept ‘photonic crystals’ and the pioneeering works (Yablonovitch 1987, John 1987, Yablonovitch and Gmitter 1989) originate from researchers in the fields of electrical engineering, atomic physics and solid state physics. It is therefore a challenge to write this chapter as an attempt to bridge the gap between two communities that would obviously benefit from lively communication. We shall start with a brief historical introduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aspnes DE (1982) Optical properties of thin films. Thin Solid Films 89:249–262

    Article  ADS  Google Scholar 

  • Baumeister P (1999) Dependence of the reflectance of a multilayer reflector on the thickness of the outer layer. Appl Optics 38:6034–6035.

    Article  ADS  Google Scholar 

  • Bell PM, Pendry JB, Martin Moreno L, Ward AJ (1995) A program for calculating photonic band structures and transmission coefficients of complex structures. Comp Phys Commun 85:306–322

    Article  ADS  Google Scholar 

  • Bloembergen N, Sievers AJ (1970) Nonlinear optical properties of periodic laminar structures. Appl. Phys. Lett. 17: 483–485

    Article  ADS  Google Scholar 

  • Born M, Wolf E (1980) Principles of optics. Pergamon Press, Oxford, Sec. 1.3.4

    Google Scholar 

  • Brillouin L (1946) Wave propagation in periodic structures. McGraw Hill, Ch. VII

    MATH  Google Scholar 

  • Carniglia CK (1999) Hot or Hype? Reflections on the ‘Perfect Mirror’. Photonics Spectra June: 148–153

    Google Scholar 

  • Cornelius CM, Dowling JP (1999) Modification of Planck Blackbody Radiation by Photonic Band-Gap Structures. Phys. Rev. A59:4736–4746

    ADS  Google Scholar 

  • Cregan RF, Mangan BJ, Knight JC, Birks TA, Russel PS J, Roberts PJ, Allan DC (1999) Single-Mode Photonic Band Gap Guidance of Light in Air. Science 285:1537–1539

    Article  Google Scholar 

  • Dobrowolski J (1978) Reststrahlen Filters. In: Driscoll W, Vaughan S (eds) Handbook of optics. McGraw-Hill, New York, Ch 8, sec 99

    Google Scholar 

  • Garcia-Vidal FJ, Pitarke JM, Pendry JB (1997) Effective Medium Theory of the Optical the Optical Properties of Aligned carbon nanotubes. Phys Rev Lett 78:4289–4292

    Article  ADS  Google Scholar 

  • Haus JW (1994) A brief review of theoretical results for photonic band structures. J Mod Optics 41: 195–207

    Article  ADS  Google Scholar 

  • Hulet RG, Hilfer ES, Kleppner D (1985) Inhibited Spontaneous Emission by a Rydberg Atom. Phys. Rev. Lett. 55: 2137–2140

    Article  ADS  Google Scholar 

  • Joannopoulus JD, Meade RD, Winn JN (1995) Photonic crystals: Molding the Flow of Light. Princeton Univ. Press, Singapore

    Google Scholar 

  • Joannopoulus JD, Villeneuve PR, Fan S (1997) Photonic Crystals: putting a new twist on light. Nature 386:143–149

    Article  ADS  Google Scholar 

  • John S (1984) Electromagnetic absorption in a disordered medium near a photon mobility edge. Phys Rev Lett 53: 2169–2173

    Article  ADS  Google Scholar 

  • John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58:2486–2489

    Article  ADS  Google Scholar 

  • Johnson SG, Joannopoulos JD (2002) Photonic Crystals The Road from theory to Practice, Kluwer Academic Publ.

    Google Scholar 

  • Lalanne P (1996) Effective medium theory applied to photonic crystals composed of cubic or square cylinders. Appl Opt 35:5369–5380

    Article  ADS  Google Scholar 

  • Leung KM, Liu YF (1990) Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media. Phys Rev Lett 65:2646–2649

    Article  ADS  Google Scholar 

  • Leung KM (1997) Diamondlike photonic band-gap crystal with a sizable gap. Phys Rev B56:3517–3519

    ADS  Google Scholar 

  • Lin SY, Chow E, Hietala V, Villeneuve PR, Joannopoulos JD (1998) Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal. Science 282:274–276

    Article  ADS  Google Scholar 

  • Lourtioz J-M, Lustrac A. (2002) Metallic photonic crystals C. R. Physique 3:79–88

    Article  ADS  Google Scholar 

  • Milton GW (2002) The theory of composites. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Modinos A, Stefanou N, Yannopapas V (2001) Applications of the layer-KKR method to photonic crystals. Optics Express 8:197–202

    Article  ADS  Google Scholar 

  • Moroz A (1994) Inward and outward integral equations and the KKR method for photons. J. Phys. Condens. Matter 6:171–202

    Article  ADS  Google Scholar 

  • Oswald JA, Wu BI, Mcintosh KA, Mahoney LJ, Verghese S (2000) Dual-band infrared me-tallodielectric photonic crystal filters. Appl. Phys. Lett 77:2098–2100

    Article  ADS  Google Scholar 

  • Ozbay E, Abeyta A, Tuttle G, Tringides M, Biswas R, Chan CT, Soukoulis CM, Ho KM (1994) Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods. Phys Rev B50:1945–1948

    ADS  Google Scholar 

  • Pendry JB (1994) Photonic band structures. J Mod Optics 41: 209

    Article  ADS  Google Scholar 

  • Pendry JB, Holden AJ, Stewart WJ, Youngs I (1996) Extremely Low Frequency Plasmons in Metallic Mesostructures. Phys Rev Lett 76:4773–4776

    Article  ADS  Google Scholar 

  • Petersen KE (1982) Silicon as a Mechanical Material. Proc IEEE 70:58–95

    Google Scholar 

  • Polman A, Wiltzius P (Guest Ed.)(2001) Materials Science Aspects of Photonic Crystals. MRS Bulletin 26: Issue 8

    Google Scholar 

  • Purcell EM (1946) Spontaneous emission probabilities at Radio Frequencies. Phys Rev 69:681

    Article  Google Scholar 

  • Ribbing CG, Wackelgard E (1991) Reststrahlen band as property indicators for materials in dielectric coatings. Thin Solid Films 206:312–317

    Article  ADS  Google Scholar 

  • Rung A, Ribbing CG (2002) Calculated photonic strucures for infrared emittance control. Appl. Optics 41:3327–3331

    Article  ADS  Google Scholar 

  • Sakoda K (2001) Optical Properties of Photonic Crystals. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Schnitzer I, Yablonovitch E, Scherer A, Gmitter TJ (1993) The single-mode light-emitting-diode. In Photonic Band Gaps and Localization (Ed Soukoulis. Plenum, New York) 369–378.

    Google Scholar 

  • Sievenpiper DF, Sickmiller ME, Yablonovitch E (1996) 3D wire mesh photonic crystals. Phys Rev Lett 76:2480–2483

    Google Scholar 

  • Sigalas MM, Soukoulis CM, Chan CT, Ho KM (1994) Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials. Phys Rev B49:11080–11087

    ADS  Google Scholar 

  • Slater JC (1958) Interaction of waves in crystals. Rev. Mod Phys. 30:197–222

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Tikhonravov A, Design of Optical Coatings, this volume. Moscow State University, Moscow, Russia

    Google Scholar 

  • Wijnhoven JEGJ, Bechger L, Vos WL (2001) Fabrication and Characterization of Large Macroporous Photonic Crystals in Titania Chem. Mater. 13:4486–4499

    Article  Google Scholar 

  • Winn JN, Fink Y, Fan S, Joannopoulus JD (1998) Omnidirectional reflection from a one-dimensional photonic crystal. Opt Lett 23: 1573–1575

    Article  ADS  Google Scholar 

  • Yablonovitch E, Gmitter TJ (1989) Photonic band structure: the face-centerd-cubic case. Phys Rev Lett 63: 1950–1953

    Article  ADS  Google Scholar 

  • Yablonovitch E (1987) Inhibited spontaneous emission in solid state physics and electronics. Phys Rev Lett 58:2059–2062

    Article  ADS  Google Scholar 

  • Yablonovitch E, Gmitter TJ, Meade RD, Rappe AM, Brommer KD, Joannopoulos JD (1991) Donor and acceptor modes in photonic band structure. Phys Rev Lett 67:3380–3383

    Article  ADS  Google Scholar 

  • Yablonovitch E (1993) Photonic band-gap structures. J Opt Soc B10: 283–295

    ADS  Google Scholar 

  • Yablonovitch E (1994) Photonic crystals. J Mod Optics 41:173–194

    Article  ADS  Google Scholar 

  • Ziman JM (1964) Principles of the Theory of Solids. Cambridge Univ. Press, sec. 3.7

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ribbing, C.G. (2003). Photonic Structures as Interference Devices. In: Kaiser, N., Pulker, H.K. (eds) Optical Interference Coatings. Springer Series in Optical Sciences, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36386-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36386-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05570-6

  • Online ISBN: 978-3-540-36386-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics