Skip to main content

Optical Thin Films for Spontaneous Emission Control

  • Chapter

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 88))

Abstract

Spontaneous emission control is aimed at controlling spectrally and spatially light emitted from very localized emitters such as atoms, molecules or any other kind of tiny optical source. Because this type of localized emitters usually radiate moderate light power, there is great interest in applications to concentrate the emitted radiation into a narrow angular direction or into a well defined spectral bandwidth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belarouci A, Jacquier B, Moretti P, Robert S, Rigneault H (2001) Praseodymium-doped planar multidielectric microcavities: induced lifetime changes over the emission spectrum. J. Opt. Soc. Am. B 18:832–838

    Article  ADS  Google Scholar 

  • Belarouci A, Menchini F, Jacquier B, Moretti P, Rigneault H, Robert S (1999) Luminescence properties of Pr3+-doped optical microcavities. J. of Luminescence 83–84:275–282

    Article  Google Scholar 

  • Björk G, Michida S, Yamamoto Y, Igeta K (1991) Modification of spontaneous emission rate in planar dielectric microcavity structures. Phys. Rev. A 44:669–681

    Article  ADS  Google Scholar 

  • Bouwmeester D, Ekert A, Zeilinger A (2000) The Physics of Quantum Information. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  • Craford MG (1996) Commercial light emitting diode technology: status, trends, and possible futur performance. In: Rarity J, Weisbuch C (eds) Microcavities and Photonic Band Gaps: Physics and Applications. Vol. 324: NATO ASI Series. Kluwer Academic Publishers, Dordrecht, pp 323–332

    Chapter  Google Scholar 

  • Deppe DG, Lei C, Lin CC, Huffaker DL (1994) Spontaneous emission from planar micro-structures. J. of Modern Opt. 41:325–344

    Article  ADS  Google Scholar 

  • De Martini F, Innocenti G, Jacobovitz GR, Mataloni P (1987) Anomaleous spontaneous emission time in a microscopic optical cavity. Phys. Rev. Lett. 59:2955–2958

    Article  ADS  Google Scholar 

  • Galaup C, Picard C, Cazaux L, Tisnes P, Aspe D, Autiero H (1996) Synthesis and luminescence of EU3+ complexes derived from novel receptors containing a tetralactam unit. New J. Chem. 20:997–999

    Google Scholar 

  • Gießen H, Berger JD, Mohs G, Meystre P (1996) Cavity-modified spontaneous emission: from Rabi oscillations to exponential decay. Phys. Rev. A 53:2816–2821

    Article  ADS  Google Scholar 

  • Goy P, Raimond JM, Gross M, Haroche S (1983) Observation of cavity-enhanced single atom spontaneous emission. Phys. Rev. Lett. 50:1903–1906

    Article  ADS  Google Scholar 

  • Gudgin Dickson EF, Pollak A, Diamandis EP (1995) Time-resolved detection of lanthanide luminescence for ultrasensitive bioanalytical assays. J. Photochem. Photobiol. B. Biol. 27:3–19

    Article  Google Scholar 

  • Hunt NJ, Schubert EF, Sivco DL, Cho AY, Kopf RF, Logan RA, Zydzik GJ (1995) High-efficiency narrow spectrum resonant cavity light emitting diodes. In: Weisbuch C, Burstein E (eds) Confined Electrons and Photons — New Physics and Applications. Vol. 340. Plenum, New York, pp 701

    Google Scholar 

  • Kitson SC, Barnes WL, Sambles JR (1996) Photoluminescence from dye molecules on silver gratings. Opt. Commun. 122:147–154

    Article  ADS  Google Scholar 

  • Lakowicz JR (1999) Principles of Fluorescence Spectroscopy. Kluwer Academic/Plenum Publisher, New York

    Book  Google Scholar 

  • Neviere M, Petit R, Cadilhac M (1973) About theory of optical grating coupler-waveguide grating systems. Opt. Commun. 8:113–117

    Article  ADS  Google Scholar 

  • Parker J, Stroud CR (1987) Transient theory of cavity-modified spontaneous emission. Phys. Rev. A 35:4226–4237

    Article  ADS  Google Scholar 

  • Purcell EM (1946) Spontaneous emission probabilities at radio frequencies. The Physical Review 69:681

    Article  Google Scholar 

  • Rigneault H, Lemarchand F, Sentenac A (2000) Dipole radiation into grating structures. J. Opt. Soc. Am. A 17:1048–1058

    Article  MathSciNet  ADS  Google Scholar 

  • Rigneault H, Amra C, Begon C, Cathelinaud M, Picard C (1999a) Light emission for sources located within metallodielectric planar microcavities. Appl. Opt. 38:3602–3609

    Article  ADS  Google Scholar 

  • Rigneault H, Lemarchand F, Sentenac A, Giovannini H (1999b) Extraction of light sources located inside waveguide grating structures. Optics Letters 24:148–150

    Article  ADS  Google Scholar 

  • Rigneault H, Monneret S (1997a) Field Quantization and spontaneous emission in lossless dielectric multilayer structures. JEOS, Quantum and Semiclassical Optics 9:1017–1040

    Article  ADS  Google Scholar 

  • Rigneault H, Robert S, Begon C, Jacquier B, Moretti P (1997b) Radiative and guided wave emission of Er3+ atoms located in planar multidielectric structures. Phys. Rev. A 55:1497–1502

    Article  ADS  Google Scholar 

  • Rigneault H, Monneret S (1996) Modal analysis of spontaneous emission in a planar microcavity. Phys. Rev. A 54:2356–2368

    Article  ADS  Google Scholar 

  • Robert S, Rigneault H, Lamarque F (1998) Spontaneous emission of Pr ions located in planar dielectric microcavities. J. Opt. Soc. Am. B 15:1773–1779

    Article  ADS  Google Scholar 

  • Suzuki M, Yokoyama H, Brorson SD, Ippen ED (1991) Observation of spontaneous emission lifetime change of dye-containing Langmuir-Blodgett films in optical microcavities. Appl. Phys. Lett. 58:998–1000

    Article  ADS  Google Scholar 

  • Tamir T (1975) Integrated Optics. Springer Verlag, New York

    Google Scholar 

  • Vredenberg AM, Hunt NEJ, Schubert EF, Jacobson DC, Poate JM, Zydzik GJ (1993) Controlled atomic spontaneous emission from Er3+ in a transparent Si/Si02 microcavity. Phys. Rev. Lett. 71:517

    Article  ADS  Google Scholar 

  • Weisbuch C, Nishioka M, Ishikawa A, Arakawa Y (1992) Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69:3314

    Article  ADS  Google Scholar 

  • Zengerle R (1987) Light propagation in singly and doubly periodic planar waveguide. J. Mod. Opt. 34:1589–1617

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rigneault, H. (2003). Optical Thin Films for Spontaneous Emission Control. In: Kaiser, N., Pulker, H.K. (eds) Optical Interference Coatings. Springer Series in Optical Sciences, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36386-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36386-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05570-6

  • Online ISBN: 978-3-540-36386-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics