Skip to main content

Optical Coatings on Plastics

  • Chapter
Optical Interference Coatings

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 88))

Abstract

Synthetic organic polymers (plastics) are increasingly used in optics for replacement of the traditionally used glass. This trend is stimulated by the beneficial properties of plastics, namely their high strength-to-weight ratio, ease of manufacture of desired shapes, suitability for mass production, mechanical flexibility when in the form of films, webs or fibers and relatively low cost. Optical plastics have found widespread use in both high-technology and consumer products; the most frequent applications are screens, windows, windshields, ophthalmic lenses, lenses for optical instruments, displays, scanner systems, decorative coatings, flexible mirrors, security devices and optical waveguides

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Affinito JD, Gross ME, Maurnier PA, Shi MK, and Graff GL (1999) Ultrahigh rate, wide area, plasma polymerized films from high molecular weight/low vapor pressure liquid or solid monomer precursors. J Vac Sci Technol A 17: 1974

    Article  ADS  Google Scholar 

  • ASTM-D1044–99 Standard Test Method for Resistance of Transparent Plastics to Surface Abrasion

    Google Scholar 

  • ASTM-D3359–97 Standard Test Methods for Measuring Adhesion by Tape Test

    Google Scholar 

  • Beckmann R, Nauenberg KD, Naumann T, Patz U, Ieked G, and Hagedorn H (2001) A new high-rate deposition process for scratch- and wipe-resistance coatings for optical and decorative plastic parts. Proc 44th Ann Tech Conf of the Society of Vacuum Coaters (SVC). Philadelphia, pp 288–294

    Google Scholar 

  • Bergeron A, Klemberg-Sapieha JE, and Martinu L (1998) Structure of the interfacial region between polycarbonate and plasma-deposited SiN1.3 and SiO2 optical coatings studied by ellipsometry. J Vac Sci Technol A 16: 3227–3234

    Article  ADS  Google Scholar 

  • Bergeron A, Poitras D, and Martinu L (2000) Interphase in plasma-deposited silicon nitride optical films on polycarbonate: In-situ ellipsometric characterization. Opt Eng 39: 825

    Article  ADS  Google Scholar 

  • Bhushan B (ed) (1995) Micro/Nano Tribology. CRC Press, New York

    Google Scholar 

  • Biederman H, and Martinu L (1990) Plasma polymer-metal composite films. In: d’Agostino R (ed) Plasma Deposition, Treatment and Etching of Polymers. New York, Chap 4: 269–320

    Google Scholar 

  • Bishop CA (2001) The use of vacuum deposited coatings for security applications. Proc 44th Ann Tech Conf of SVC, Philadelphia, pp 425–430

    Google Scholar 

  • Blacker R, Bohling D, Coda M, and Kolasey M (2000) Development of intrinsically conductive antireflection coatings for the ophthalmic industry. Proc 43rd Ann Tech Conf of SVC, Denver, pp 212–216

    Google Scholar 

  • Blees MH, Winkelman GB, Balkenende AR, and den Toonder JMJ (2000) The effect of friction on scratch adhesion testing: application to a sol-gel coating on polypropylene. Thin Solid Films 359:1

    Article  ADS  Google Scholar 

  • Bohling D, Coda M, Blacker R, Burton C, Gove R, Murphy P, Threlfall I, and Samson F (2000) Abrasion resistant and optical thin film coatings for ophthalmic lenses. Proc 43rd Ann Tech Conf of SVC, Denver, pp 222–229

    Google Scholar 

  • Bulkin P, Bertrand N, Drévillon B, Rostaing JC, Delmotte F, Hugon MC, and Agius B (1997) Plasma enhanced chemical vapour deposition of silica thin films in an integrated distributed electron cyclotron resonance reactor. Thin Solid Films 308–309: 6974

    Google Scholar 

  • Bull SJ (2001) Interface engineering and graded films: structure and characterization. J Vac Sci Technol A 19: 1404–1414

    Article  ADS  Google Scholar 

  • Bull SJ, and Rickerby DS (1990) New developments in the modeling of the hardness and scratch adhesion of thin films. Surf Coat Technol 42: 161

    Article  Google Scholar 

  • Bunshah RF (ed) (1994) Handbook of Deposition Technologies for Films and Coatings. 2nd edn. Noyes Publications, Park Ridge, NJ

    Google Scholar 

  • Burnett PJ, and Rickerby DS (1987) The relationship between hardness and scratch adhesion. Thin Solid Films 154: 403–416

    Article  ADS  Google Scholar 

  • Cairnes DR, Paine DC, and Crawford GP (2001) The mechanical reliability of sputtercoated indium tin oxide polyester substrates for flexible display and touchscreen applications. Proc 44th Ann Tech Conf of SVC, Philadelphia, pp 160–165

    Google Scholar 

  • Chatham H (1996) Oxygen diffusion barrier properties of transparent oxide coating on polymeric substrates. Surf. and Coatings Technol 78: 1

    Article  Google Scholar 

  • Cormia RL, Fenn Jr JB, Memarian H, and Ringer G (1998) Roll-to-roll coating of indium tin oxide — a status report. Proc 41st Ann Tech Conf of SVC, Chicago, pp 452–457

    Google Scholar 

  • Cuomo JJ, Rossnagel SM, and Kaufman GR (eds) (1990) Handbook of Ion Beam Processing Technology. Noyes Publications, Park Ridge, NJ

    Google Scholar 

  • Dalacu D, and Martinu L (2000) Spectroellipsometric characterization of plasma-deposited Au/SiO2 nanocomposite films. J Appl Phys 87: 228

    Article  ADS  Google Scholar 

  • Da Silva-Sobrinho AS, Latreche M, Czeremuszkin G, Klemberg-Sapieha JE, and Wertheimer MR (1998a) Transparent barrier coatings on polyethylene terephthalate by single- and dual-frequency plasma-enhanced chemical vapor deposition. J Vac Sci. Technol A 16: 3190–3198

    Article  ADS  Google Scholar 

  • Da Silva-Sobrinho AS, Schüler N, Klemberg-Sapieha JE, Wertheimer MR, Andrews M, and Gujrathi SC (1998b) Plasma-deposited silicon oxide and silicon nitride films on polyethylene-terephthalate: A multitechnique study of the interphase regions. J Vac Sci Technol A 16: 3190–3198

    Article  ADS  Google Scholar 

  • Dobrowolski JA (1995) Usual and unusual applications of optical thin films — an introduction. In: Hummel RE and Guenther KH (eds) Handbook of Optical Properties, vol I. CRC Press, Boca Raton, pp 5–35

    Google Scholar 

  • Dobrowolski JA, Ho FC, and Waldorf A (1989) Research on thin film anti-counterfeiting coatings at the NRC of Canada. Applied Optics 28: 2702

    Article  ADS  Google Scholar 

  • Ellison T, Dotter B, Izu M, and Ovshinsky S (1997) New high speed, low cost roll-to-roll antireflectivity coating technology. Proc 40th Ann Tech Conf of SVC, pp 309–312

    Google Scholar 

  • Finley JJ (2001) The evolution of solar infrared reflective glazing in automobiles. Proc 44th Ann Tech Conf of SVC, Philadelphia, pp 193–203

    Google Scholar 

  • Fozza AC, Klemberg-Sapieha JE, and Wertheimer MR (1999) Vacuum ultraviolet irradiation of polymers. Plasmas and Polymers 4: 183–205

    Article  Google Scholar 

  • Gächter R, Muller H, and Klemchuk PP (eds) (1993) Plastics Additives Handbook. 4th edn. Hanser, Munich

    Google Scholar 

  • Gerenser L (1988) An X-ray photoemission spectroscopy study of chemical interaction at silver/plasma modified polyethylene interface: correlation with adhesion. J Vac Sci Technol A 6: 2897–2903

    Article  ADS  Google Scholar 

  • Glick I, Dobrowolski JA, Fahland M, Karlsson P, and Seltmann W (2001) Development of three-layer OVD coating based on dual-magnetron reactively sputtered dielectric films. Proc 44th Ann Tech Conf of SVC, Philadelphia, pp 431–437

    Google Scholar 

  • Greenham AC, Nichols BA, Wood RM, Nourshargh N, and Lewis KL (1993) Optical interference filters with continuous refractive index modulations by microwave plasmaassisted chemical vapor deposition. Opt Eng 32: 1018–1024

    Article  ADS  Google Scholar 

  • Guenther KH (1988) Coating of plastics — coatings on plastic. SPIE Vol. 896: 134–139

    Article  Google Scholar 

  • Harper CA (1992) Handbook of Plastics, Elastomers and Composites. McGraw-Hill, New York

    Google Scholar 

  • Harper JME, Cuomo JJ, Gambino RG, and Kaufman HR (1984) Modification of thin film properties by ion bombardment during deposition. In: Auciello O, and Kelly R. (eds) Ion Bombardment Modification of Surfaces. Elsevier, New York, p 127

    Google Scholar 

  • Hollander A, Klemberg-Sapieha JE, and Wertheimer MR (1995) Vacuum-ultraviolet induced oxidation of polymers: polyethylene and polypropylene. J Polym Sci-A; Polym Chem 33: 2013–2025

    Article  ADS  Google Scholar 

  • Holmberg K, and Matthews A (1998) Coatings Tribology. In: Dawson D (ed) Tribology Series 28. Elsevier, Amsterdam

    Google Scholar 

  • Hong J, Truica-Marasescu F, Martinu L, and Wertheimer MR (2002) An investigation of plasma-polymer interactions by mass spectrometry. Plasmas and Polymers 7:245–260

    Article  Google Scholar 

  • Hora R, and Wohlrab (1993) Plasma polymerization: A new technology for functional coatings on plastics. Proc 36th Ann Tech Conf of SVC, pp 51–57

    Google Scholar 

  • Kelly PJ, and Arnell RD (1998) Development of a novel structure zone model relating to the closed-field unbalanced magnetron sputtering system. J Vac Sci Technol A 16 (5): 2858

    Article  ADS  Google Scholar 

  • Klemberg-Sapieha JE, Küüttel OM, Martinu L, and Wertheimer MR (1990) Dual microwave/radio frequency plasma deposition of functional coatings. Thin Solid Films 193/194: 965–972

    Article  ADS  Google Scholar 

  • Klemberg-Sapieha JE, Poitras D, Martinu L, Yamasaki NLS, and Lantman CW (1997) Effect of interface on the characteristics of functional films deposited on polycarbonate in dual-frequency plasma. J Vac Sci Technol A 15: 985–991

    Article  ADS  Google Scholar 

  • Klemberg-Sapieha JE, Martinu L, Fridman V, and Morton DE (1998a) Characterization of hydrophobic thin films prepared using a cold cathode ion source. Proc of the 41st Ann Tech Conf of SVC, Chicago, pp 138–143

    Google Scholar 

  • Klemberg-Sapieha JE, Martinu L, Yamasaki NLS, Lantman CW (1998b) Plasma-induced stabilization of PMMA surfaces for enhanced adhesion of plasma-deposited coatings. Mater Res Soc Symp Proc 544: 277

    Article  Google Scholar 

  • Klemberg-Sapieha JE, Dahl S, and Martinu L (2000) Nano- and micromechanical characterization of optical coatings fabricated by PECVD. Proc 43rd Ann Tech Conf of SVC, Denver, pp 234–238

    Google Scholar 

  • Krautz H, Weissling H, Böhme T, Thielsch R, Hecht C, Kammer M, Langer A, Gawer O, and Milde F (2001) Grossflchen-beschichtung von Kunststofffolie fűr Automobilverglasung und Architekturanwendungen. Neues Dresdner Vacuumtechnisches Kolloquium (NDVaK), VDI, Dresden, pp 1–15

    Google Scholar 

  • Lampert CM (2000) Smart switchable materials for the new millennium — windows and displays. Proc 43rd Ann Tech Conf of SVC, Denver, pp 165–170

    Google Scholar 

  • Lee C-C, Hsu J-C, and Jaing C-C (1997) Optical coatings on polymethyl methacrylate and polycarbonate. Thin Solid Films 295: 122–124

    Article  ADS  Google Scholar 

  • Lewis BG, and Paine DC (2000) Applications and processing of transparent conducting oxides. MRS Bulletin 25: 22

    Article  Google Scholar 

  • Liston EM, Martinu L, and Wertheimer MR (1993) Plasma surface modification of polymers for improved adhesion: a critical review. J Adhesion Sci Technol 7: 1091

    Article  Google Scholar 

  • Mathew JGH, Sapers SP, Cumbo MJ, O’Brien NA, Sargent RB, Raksha VP, Lahaderne RB, and Hichwa BP (1997) Large area electrochromics for architectural applications. J of Non-Crystalline Solids 218: 342–346

    Article  ADS  Google Scholar 

  • Martin PJ (2001) The coming of molecular optoelectronics. Proc 44th Ann Tech Conf of SVC, Philadelphia, pp 1–3

    Google Scholar 

  • Martinu L (1997) Plasma deposition and testing of hard coatings on plastics. In: d’Agostino R, Fracassi F, Favia P (eds) Plasma Treatments and Deposition of Polymers. Kluwer, Dordrecht NATO ASI Vol. 346: 247–272

    Chapter  Google Scholar 

  • Martinu L, and Poitras D (2000) Plasma deposition of optical films and coatings: a review. J Vac Sci Technol A 18: 2619–2645

    Article  ADS  Google Scholar 

  • Martinu L, Klemberg-Sapieha JE, and Wertheimer MR (1989) Dual-mode microwave/radio frequency plasma deposition of dielectric thin films. Appl. Phys. Lett. 54: 2645–2647

    Article  ADS  Google Scholar 

  • Martinu L, Klemberg-Sapieha JE, Küttel OM, Raveh A, and Wertheimer MR (1994) Critical ion energy and ion flux in the growth of films by PECVD. J Vac Sci Technol A 12: 1360–1364

    Article  ADS  Google Scholar 

  • Mittal KL, and Pizzi L (eds) (1999) Adhesion Promotion Techniques. Marcel Dekker, New York

    Google Scholar 

  • Musil J (1992) Inter-relationships process parameters-microstructure-film properties, a key to new materials and applications. Proc of the Int Symp on Elementary Processes and Chemical Reactions in Low Temperature Plasma. Casta, Slovakia, p 177

    Google Scholar 

  • Ohring M (1992) The Materials Science of Thin Films. Academic Press, New York

    Google Scholar 

  • Oliver WC, and Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7: 1564–1583

    Article  ADS  Google Scholar 

  • Phillips RW, and Nofi M (1999) Colors by chemistry or by physics?. Proc 42nd Ann Tech Conf of SVC, Chicago, pp 494–459

    Google Scholar 

  • Pitt AM, Bennett RM, and Higgins DE (2001) Novel route for the production of high performance pigments. Proc 43rd Ann Tech Conf of SVC, Denver, pp 438–443

    Google Scholar 

  • Poitras D, and Martinu L (2000) Interphase in plasma-deposited films on plastics: effect on the spectral properties of optical filters. Appl. Opt. 39: 1168

    Article  ADS  Google Scholar 

  • Poitras D, Leroux P, Klemberg-Sapieha JE, Gujrathi SC, and Martinu L (1996) Characterization of inhomogeneous Si-based optical coatings deposited in dual-frequency plasma. Opt Eng 35: 2693 – 2699

    Article  ADS  Google Scholar 

  • Poitras D, Larouche S, and Martinu L (2002) Design and plasma deposition of dispersioncorrected multiband rugate filters. Appl Opt 41: 5249–5255

    Article  ADS  Google Scholar 

  • Pongratz S, and Zoller A (1992) Plasma ion assisted deposition: a promising technique for coatings. J Vac Sci Technol A 10: 1897–1904

    Article  ADS  Google Scholar 

  • Proceedings of the Annual Technical Conferences of the Society of Vacuum Coaters (SVC), (1990–2002) Volumes 34–46. Useful reference for technological aspects

    Google Scholar 

  • Rats D, Hajek V, and Martinu L (1999) Micro-scratch analysis and mechanical properties of plasma-deposited silicon-based coatings on polymer substrates. Thin Solid Films 340: 33–39

    Article  ADS  Google Scholar 

  • Raymond M-A, Larouche S, Zabeida O, Martinu L, Klemberg-Sapieha JE (2001) Tribological properties of PECVD optical coatings. Proc 44th Ann Tech Conf of SVC, Philadelphia, pp 301–305

    Google Scholar 

  • Rivaton A, Gardelle J (1998) Photo-oxidation of aromatic polymers. Angew Macromol Chem 261/262: 173

    Google Scholar 

  • Rossnagel SM, Cuomo JJ, and Westwood WD (eds) (1990) Handbook of Plasma Processing Technology. Noyes Publications, Park Ridge, NJ

    Google Scholar 

  • Rostaing C, Coeuret F, Drevillon B, Etemadi R, Godet C, Huc J, Parey JY, and Yakovlev VA (1993) Silicon-based protective transparent multilayer coatings deposited at high rate on optical polymers by dual-mode MW/rf PECVD. Thin Solid Films 236: 58–63

    Article  ADS  Google Scholar 

  • Samson F (1996) Optical lens coatings. Surf Coat Technol 81: 79–86

    Article  Google Scholar 

  • Schulz U, Munzert P, Kaiser N (2001) PVD coating of plastics for optical applications. Surf Coat Technol 142–144: 507–511

    Article  Google Scholar 

  • Schulz U, Schallenberg UB, Kaiser N (2002) Antireflection coating design for plastic optics. Applied Optics 41: 3107–3110

    Article  ADS  Google Scholar 

  • Segner J (1995) Plasma impulse chemical vapor deposition. In: Flory FR (ed), Thin Films for Optical Systems. Marcel Dekker, New York, Chap 7: 209

    Google Scholar 

  • Simpson J, and Lewis KL (1997) Trends in optical coating. Proc 40th Ann Tech Conf of SVC, Denver, pp 248–254

    Google Scholar 

  • Taga Y (1997) Recent progress in coating technology for surface modification of automotive glass. J of Non-Crystalline Solids 218: 335–341

    Article  ADS  Google Scholar 

  • Tang CW, and Van Slike SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51: 913

    Article  ADS  Google Scholar 

  • Uyama H, Harada T, Takahaski T, and Tomikawa N (2001) Web coating formation of antireflection films on flexible substrates by evaporation. AIMCAL, Proc 15th Bakish Int Vacuum Web Coating Conf

    Google Scholar 

  • Vossen JL, and Kern W (1991) Thin Film Processes II. Academic Press, New York

    Google Scholar 

  • Weaver MS et al.(17 authors) (2001) Flexible organic LED displays. Proc 44th Ann Tech Conf of SVC, Philadelphia, pp 155–159

    Google Scholar 

  • Wertheimer MR, Martinu L, and Liston EM (1996) Plasma sources for polymer surface treatment. In: Glocker D, and Shah SI (eds) Handbook of Thin Film Process Technology. IOP, Bristol. Chap E3.0

    Google Scholar 

  • Wertheimer MR, Martinu L, Klemberg-Sapieha JE, and Czeremuszkin G (1999a) Plasma treatment of polymers to improve adhesion. In: Mittal KL and Pizzi A (eds) Adhesion Promotion Techniques. Marcel Dekker, New York, pp 139–153

    Google Scholar 

  • Wertheimer MR, Fozza AC, and Hollander A (1999b) Industrial processing of polymers by low pressure plasmas: the role of VUV radiation. Nucl Instrum Methods Phys Res B 151: 65

    Article  ADS  Google Scholar 

  • Wohlrab C, and Hofer M (1995) Plasma polymerization of optical coatings on organic substrates: equipment and processes. Proc 38th Ann Tech Conf of SVC, Chicago, pp 222–231

    Google Scholar 

  • Zabeida O, Klemberg-Sapieha JE, Martinu L, and Morton D (1999) Study of ion bombardment effects on optical films and polymer surfaces using a cold cathode ion source. Proc 42nd Ann Tech Conf of SVC, Chicago, pp 267–272

    Google Scholar 

  • Zabeida O, Hallil A, Wertheimer MR, Martinu L (2000) Time resolved measurements of ion energy distributions in dual-mode pulsed microwave/radiofrequency plasma. J Appl Phys 88: 635

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martinu, L., Klemberg-Sapieha, J.E. (2003). Optical Coatings on Plastics. In: Kaiser, N., Pulker, H.K. (eds) Optical Interference Coatings. Springer Series in Optical Sciences, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36386-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36386-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05570-6

  • Online ISBN: 978-3-540-36386-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics