Skip to main content

Psammoids with reversals

  • Chapter
  • First Online:
Physical Soil Mechanics

Abstract

It was shown at length in Chap. 2 that the behaviour of psammoids with reversals cannot generally be captured without internal state variables. But how to introduce and justify hidden quantities? Babuska and Oden (2006) show that the uniaxial anelastic response of metals with some hundred cycles is not satisfactorily captured by widely used elastoplastic relations with internal variables. It is not my intention to overcome this misery for solids in Sect. 4.1, but to prepare more geometrico a way out for soils. The hidden state can be related with the spatial fluctuation of internal forces, this is called force-roughness. This oriented quantity is particularly indicated by the asymptotic response to strain cycles and ratcheting (cf. Sect. 2.1). The proposed additional attractors of force-roughness are inevitably heuristic, but may help to secure objectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Babuska I. and Oden J.T. The reliability of computer predictions: can they be trusted? Int. J. Numer. Anal. Model., 3:255–272, 9 2006.

    MATH  Google Scholar 

  • Barkan D.D. Dynamics of Bases and Foundations. McGraw-Hill Book Company, New York, 1962.

    Google Scholar 

  • Casagrande A. Characteristics of cohesionless soils affecting the stability of slopes and earth fills. J. Boston Soc. Civil Eng., 23:257–276, 1 1936.

    Google Scholar 

  • Castro G. Liquefaction and cyclic mobility of saturated sands. J. Geotech. Eng. Div., ASCE, 101(GT6):551–569, 1975.

    Google Scholar 

  • Chang C. and Whitman V. Drained permanent deformation of sand due to cyclic loading. J. Geotech. Eng. Div., ASCE, 114(10):1164–1180, 1988.

    Article  Google Scholar 

  • Duttine A., Tatsuoka F., Kongkitkul W., and Hirakawa D. Viscous behaviour of unbound granular materials in direct shear. Soils Found., 48 (3):297–318, 2008.

    Google Scholar 

  • Edwards S.F. and Oakeshott R.B.S. Granular matter: An interdisciplinary approach. Physica A, 157:1080, 1989.

    Article  MathSciNet  Google Scholar 

  • Franke E., Kiekbusch M., and Schuppener B. A new direct simple shear device. Geotech. Test. J., 2(4):190–199, 1979.

    Article  Google Scholar 

  • Gajo A. and Muir Wood D. Severn-Trent sand: A kinematic-hardening constitutive model: The q-p formulation. Géotechnique, 49(5):595–614, 1999.

    Article  Google Scholar 

  • Gudehus G. Seismo-hypoplasticity with a granular temperature. Granular Matter, 8(2):93–102, 2006.

    Article  MATH  Google Scholar 

  • Gudehus G., Goldscheider M., and Winter H. Mechanical Properties of Sand and Clay and Numerical Integration Methods: Some Sources of Errors and Bounds of Accuracy, pages 121–150. Balkema, Rotterdam, 1977.

    Google Scholar 

  • Haff P.K. Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech., 134:401–430, 1983.

    Article  MATH  Google Scholar 

  • Hardin B.O. and Drnevich V.P. Shear modulus and damping in soils; ii. design equations and curves. J. Soil Mech. Found. Div., ASCE, 98 (SM7):667–692, 7 1972.

    Google Scholar 

  • Herrmann H.J. On the thermodynamics of granular media. J. Phys. II France, 3:427–433, 1993.

    Article  Google Scholar 

  • Howell D.W., Behringer R.P., and Veje C. T. Fluctuations in granular media. Chaos, 9 (3):559–572, 1999.

    Article  MATH  Google Scholar 

  • Huber G. and Wienbroer H. Vibro-viscosity and granular temperature of cylindrical grain skeletons-experiments. In M.J. Herrmann, R. Garcia-Rojo and S. McNamara, editors, Powders and Grains 05, pages 287–290. Balkema, Rotterdam, 2005.

    Google Scholar 

  • Hungr O. and Morgenstern N.R. High velocity ring shear tests on sand. Géotechnique, 34: 415–421, 1984.

    Article  Google Scholar 

  • Ibsen L.B. The stable state in cyclic triaxial testing on sand. Soil Dyn. Earthquake Eng., 13:63–72, 1994.

    Article  Google Scholar 

  • Ishihara K. and Towhata I. Sand response to cyclic rotation of principal stress directions as induced by wave loads. Soils Found., 23(4):11–26, 1983.

    Google Scholar 

  • Iwasaki T., Tatsuoka F., and Takagi Y. Shear moduli of sands under cyclic torsional shear loading. Soils Found., 18(1):39–56, 1978.

    Google Scholar 

  • Jaeger H.M., Nagel S.R., and Behringer R.P. Granular solids, liquids, and gases. Rev. Modern Phys., 68(4):1259–1273, 10 1996.

    Article  Google Scholar 

  • Jefferies M.G. Plastic work and isotropic softening in unloading. Géotechnique, 47(5):1037–1042, 1997.

    Article  Google Scholar 

  • Kondic L. and Behringer R.P. Elastic energy, fluctuations and temperature for granular materials. Europhys. Lett., 67(2):205–211, 2004.

    Article  Google Scholar 

  • Kuroda M. and Tvergaard V. A phenomenological plasticity model with non-normality effects representing observations in crystal plasticity. J. Mech. Phys. Solids, 49:1239–1263, 2001.

    Article  MATH  Google Scholar 

  • Kuwano R. and Jardine R.J. On the applicability of cross-anisotropic elasticity to granular materials at very small strains. Géotechnique, 52(10):727–749, 2002.

    Google Scholar 

  • Manzari M.T. and Dafalias Y.F. A critical state two-surface plasticity model for sands. Géotechnique, 47(2):255–272, 1997.

    Article  Google Scholar 

  • Mróz Z. On the description of anisotropic work hardening. J. Mech. Phys. Solids, 15:163–175, 1967.

    Article  Google Scholar 

  • Niemunis A. and Herle I. Hypoplastic model for cohesionless soils with elastic strain range. Mech. Cohesive-Frict. Mater., 2:279–299, 1997.

    Article  Google Scholar 

  • Niemunis, A., Wichtmann T., and Triantafyllidis Th. A high-cycle accumulation model for sand. Comput. Geotech., 32(4):245–263, 2005.

    Article  Google Scholar 

  • Niemunis A., Grandas-Tavera C.E., and Prada-Sarmiento L.F. Anisotropic visco-hypoplasticity. Acta Geotechnica, 4: 293–314, 2009.

    Article  Google Scholar 

  • Pestana J.M. and Whittle A.J. Formulation of a unified constitutive model for clays and sands. Int. J. Numer. Anal. Meth. Geomech., 23:1215–1243, 1999.

    Article  MATH  Google Scholar 

  • Pestana J.M., Whittle A.J., and Salvati L.A. Evaluation of a constitutive model for clays and sands: Part 1 – sand behaviour. Int. J. Numer. Anal. Meth. Geomech., 26:1097–1121, 2002b.

    Article  MATH  Google Scholar 

  • Pradhan T.B.S., Tatsuoka F., and Sato Y. Experimental stress-dilatancy relations of sand subjected to cyclic loading. Soils Found., 29(1):45–64, 3 1989.

    Google Scholar 

  • Richart F.E., Hall J.R., and Woods R.D. Vibrations of Soils and Foundations. Prentice-Hall, New Jersey, 1970.

    Google Scholar 

  • Roesler S. Anisotropic shear modulus due to stress anisotropy. J. Geotech. Eng. Div., ASCE, 105(GT7): 871–880, 7 1979.

    Google Scholar 

  • Roscoe K.H. The influence of strains in soil mechanics. Géotechnique, 20(2):129–170, 1970.

    Article  Google Scholar 

  • Taiebat M. and Dafalias Y.F. SANISAND:simple anisotropic sand model. Int. J. Num. Anal. Meth. Geomech., 32(8):915–948, 2007.

    Article  Google Scholar 

  • Tillemans H.-J. and Herrmann H.J. Simulating deformations of granular solids under shear. Physica A, 217:261–288, 1995.

    Article  Google Scholar 

  • Verdugo R. and Ishihara K. The steady state of sandy soils. Soils Found., 36(2):81–91, 6 1996.

    Google Scholar 

  • Vielsack P. Pseudoviskosität bei trockener Reibung. Geotechnik, 14(1):11–15, 1991.

    Google Scholar 

  • Wichtmann T., Niemunis A., and Triantafyllidis T. Experimental evidence of a unique flow rule of non-cohesive soils under high-cyclic loading. Acta Geotech., 1:59–73, 5 2006.

    Article  Google Scholar 

  • Andersen K.H. and Berre T. Behaviour of a dense sand under monotonic and cyclic loading. In Proceedings of the 12th ECSMGE, Geotechnical Engineering for Transportation Infrastructure, pages 667–676, 1999.

    Google Scholar 

  • Behringer R.P. and Miller B. Stress fluctuations for sheared 3D granular materials. In Powders and Grains 97, pages 333–336. A.A. Balkema: Rotterdam, 1997.

    Google Scholar 

  • Calvetti F., Viggiani G., and Tamagnini C. Micromechanical inspection of constitutive modelling. In Constitutive Modelling and Analysis of Boundary Value Problems in Geotechnical Engineering, pages 187–216. Hevelius Edizion:, Benevento, 2003.

    Google Scholar 

  • Cudmani R. Fundamental aspects of soil response and soil-structure interaction during strong earthquakes, 2010. monography, under preparation.

    Google Scholar 

  • Cundall P.A., Drescher A., and Strack O.D.L. Numerical experiments on granular assemblies; measurements and observations. In IUTAM Conf. Deformation and Failure of Granular Materials, pages 355–370. Delft, 1982.

    Google Scholar 

  • Dantu P. A contribution to the mechanical and geometrical study of non-cohesive masses. In Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering, volume 1, pages 144–157. 1957.

    Google Scholar 

  • Huber G. Asymptotic beaviour of sand in resonant-column tests. Granular Matter, 2010. under preparation.

    Google Scholar 

  • Hyodo M., Murata H., Yasufuku N., and Fujii T. Undrained cyclic shear strength and deformation of sands subjected to initial static shear stress. In Proceedings of the 4th International Conference on Soil Dynamics and Earthquake Engineering, pages 81–103. Mexico City, 1989.

    Google Scholar 

  • Iwan W.D. A distributed-element model for hysteresis and its steady-state dynamic response. J. Appl. Mech., 893–900, 12 1966.

    Google Scholar 

  • Katzenbach R. and Festag G. Material behaviour of dry sand under cyclic loading. In International Conference on “Cyclic Behaviour of Soils and Liquefaction Phenomena”, pages 153–158, Bochum, 2004.

    Google Scholar 

  • Luong M.P. Mechanical aspects and thermal effects of cohesionless soils under cyclic and transient loading. In Proceedings of the IUTAM Conference on Deformation and Failure of Granular Materials, Delft, pages 239–246, 1982.

    Google Scholar 

  • Masing G. Eigenspannungen und Verfestigung beim Messing. In Proceedings of the 2nd International Congress of Applied Mechanics, pages 332–335. Zurich, 1926.

    Google Scholar 

  • Matsushita M., Tatsuoka F., Koseki J., Cazacliu B., di Benedetto H., and Yasin S.J.M. Time effects on the pre-peak deformation properties of sands. In Int. Conf. Pre-Failure Deform. Char. Geomat., pages 681–689. 1999.

    Google Scholar 

  • Mogami T. and Kubo, K. The behaviour of soil during vibration. In Proceedings of the 3rd International Conference on Soil Mechanics and Foundation Engineering, volume I, Switzerland, 1953.

    Google Scholar 

  • Niemunis A. and Prada F. Lessons from FE-implementation of SaniSand and hypoplasticity. Submitted to Acta Geotechnica, 2010.

    Google Scholar 

  • Osinov V.A. and Wu W. Instability and ill-posedness in the deformation of plastic solids: Some correlations through simple examples. Trends Appl. Math. Mech., 361–370, 2005.

    Google Scholar 

  • Rao V.V.S. Scherfestigkeit von Sand bei dynamischer Beanspruchung. Die Bautechnik, 12, 1966.

    Google Scholar 

  • Rebstock D. Stressing and Relaxation of Sand. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, 2010, under preparation.

    Google Scholar 

  • Richter S. Mechanical Behavior of Fine-Grained Model Materials During Cyclic Shearing. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 167, 2006.

    Google Scholar 

  • Rowe P.W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. In Proceedings of the Royal Society, pages 500–527. 1962.

    Google Scholar 

  • Truesdell C. and Noll W. The non-linear field theories of mechanics. In Handbuch der Physik, volume III/3. Springer, Berlin, 1965.

    Google Scholar 

  • Wichtmann T. Explicit Accumulation Model for Non-cohesive Soils Under Cyclic Loading. PhD thesis, Institut Grundbau und Bodenmech. Ruhr-Univ., Bochum, Germany, Heft 38, 2005.

    Google Scholar 

  • Wienbroer, H. Zustandsgrenzen und Grenzzyklen von Sand. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, 2010. under preparation.

    Google Scholar 

  • Wu W. Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe. PhD thesis, 1992.

    Google Scholar 

  • Youd T.L. Compaction of sands by repeated shear straining. J. Soil Mech. Found. Eng. Div., ASCE, 709–725, 7 1972.

    Google Scholar 

  • Prada F. Improvement of Small Strain Stiffness Behavior in the Hypoplasticity. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Gudehus .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gudehus, G. (2011). Psammoids with reversals. In: Physical Soil Mechanics. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36354-5_4

Download citation

Publish with us

Policies and ethics