Skip to main content

Simple peloids

  • Chapter
  • First Online:
Physical Soil Mechanics

Abstract

Mach (1912) stated ‘The economy of communication and perception belongs to the essence of science’. Which are the essentials of soils like clay, and how can they be captured in Mach’s sense? Which properties and concepts can be taken over from psammoids, what should be added in the first place, and what could be left aside?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi T. and Oka F. Constitutive equations for normally consolidated clay based on elasto-viscoplasticity. Soils Found., 22: 57–70, 1982.

    Google Scholar 

  • Airey D.W. and Wood D.M. An evaluation of direct simple shear tests on clay. Géotechnique, 37(1):25–35, 1987.

    Article  Google Scholar 

  • Balthasar K., Gudehus G., Külzer M., and Libreros-Bertini A.B. Thin layer shearing of a highly plastic clay. Nonlin. Proc. Geophys., 13:671–680, 11 2006.

    Article  Google Scholar 

  • Barden L. Time-dependent deformations of normally consolidated clays and peats. J. Soil Mech. Found. Div., ASCE, 95(1):1–31, 1969.

    Google Scholar 

  • Been K. and Sills G.C. Self-weight consolidation of soft soils: an experimental and theoretical study. Géotechnique, 31(4):519–535, 1981.

    Article  Google Scholar 

  • Bowden F.P. and Tabor D. The Friction and Lubrication of Solids. Clarendon Press, Oxford, 2nd edition. 1954.

    Google Scholar 

  • Brooker E.W. and Ireland H.O. Earth pressures at rest related to stress history. Can. Geotech. J., II(1):1–15, 2 1965.

    Google Scholar 

  • Buisman A.S.K. Grondmechanica. Waltman, Delft, 1941.

    Google Scholar 

  • Butterfield R. A natural compression law for soils. Géotechnique, 29:469–480, 1979.

    Article  Google Scholar 

  • Campanella R.G. and Vaid Y.P. Triaxial and plane strain creep rupture of an undisturbed clay. Can. Geotech. J., 11(1):1–10, 2 1974.

    Article  Google Scholar 

  • Den Haan E.J. and Kamao S. Obtaining isotache parameters from a c.r.s. k o-oedometer. Soils Found., 43(4):203–214, 8 2003.

    Google Scholar 

  • Derjaguin B.V. Investigation of the properties of water II. J. Colloid Interface Sci., 38 (4):415–426, 1971.

    Article  Google Scholar 

  • Goldscheider M. and Bösinger E. Bestimmung der Scherfestigkeit von Tonschichten im Bereich tiefer Tagebaurandböschungen. Neue Bergbautechnik, 19,2(3):87–90, 3 1989.

    Google Scholar 

  • Gudehus G. A comprehensive constitutive equation for granular materials. Soils Found., 36(1):1–12, 1996.

    Google Scholar 

  • Gudehus G. A visco-hypoplastic relation for soft soil. Soils Found., 44(4):11–25, 8 2004b.

    Google Scholar 

  • Gudehus G., Goldscheider M., and Winter H. Mechanical Properties of Sand and Clay and Numerical Integration Methods: Some Sources of Errors and Bounds of Accuracy, pages 121–150. Balkema, Rotterdam, 1977.

    Google Scholar 

  • Hambly E.C. Plane strain behaviour of remoulded normally consolidated kaolin. Géotechnique, 22 (2):301–317, 1972.

    Article  Google Scholar 

  • Henkel D.J. The relationships between the strength, pore-water pressure, and volume-change characteristics of saturated clays. Géotechnique, 9(3): 119–135, 1959.

    Article  MathSciNet  Google Scholar 

  • Henkel D.J. The relationships between the effective stresses and water content in saturated clays. Géotechnique, 10:41–54, 1960.

    Article  Google Scholar 

  • Hicher P.Y. and Lade P.V. Rotation of principal directions in k o-consolidated clay. J. Geotech. Eng. Div., ASCE, 113(7):774–787, 7 1987.

    Article  Google Scholar 

  • Hong W.P. and Lade P.V. Elasto-plastic behavior of k o-consolidated clay in torsion shear tests. Soils Found., 29(2):127–140, 6 1989.

    Google Scholar 

  • Kirkgard M.M. and Lade P.V. Anisotropic three-dimensional behavior of a normally consolidated clay. Can. Geotech. J., 30:848–858, 1993.

    Article  Google Scholar 

  • Mach E. Die Mechanik in ihrer Entwicklung, historisch-kritisch dargestellt. Brockhaus, Leipzig, 7 edition. 1912.

    MATH  Google Scholar 

  • Mesri G. Coefficient of secondary compression. J. Soil Mech. Found. Div., ASCE, 99(SM1):123–137, 1973.

    Google Scholar 

  • Mitchell J.K., Campanella R.G., and Singh A. Soil creep as rate process. J. Soil Mech. Found. Div., ASCE, 94:231–253, 1 1968.

    Google Scholar 

  • Nakai T. and Matsuoka H. Shear behavior of sand and clay under three-dimensional stress condition. Soils Found., 23(2):26–40, 6 1983.

    Google Scholar 

  • Niemunis A. Extended Hypoplastic Models for Soils. Polytechnica, Gdansk, Poland, 2003. monography.

    Google Scholar 

  • Niemunis A. and Cudny M. On hyperelasticity for clays. Comput. Geotech., 23:221–236, 1998.

    Article  Google Scholar 

  • Oda Y. and Mitachi T. Stress relaxation characteristics of saturated clays. Soils Found., 28(4):69–80, 12 1988.

    Google Scholar 

  • Oka F., Kodaka T., Kimoto S., Ishigaki S., and Tsuji C. Step-changed strain rate effect on the stress-strain relations of a clay and constitutive modeling. Soils Found., 43(4):189–202, 8 2003.

    Google Scholar 

  • Pearce J.A. A new true triaxial apparatus. In R.H.G. Parry, editor, Stress-Strain Behaviour of Soils, pages 330–339. Foulis, Henley-on-Thames, 1972.

    Google Scholar 

  • Persson B.N.J. On the role of intertia and temperature in continuum and atomistic models of brittle fracture. J. Phys. Condens. Matter, 10:10529–10538, 1998.

    Article  Google Scholar 

  • Persson B.N.J. Theory of time-dependent plastic deformation in disordered solids. Phys. Rev. B., 61(9):5949–5966, 2000a.

    Article  Google Scholar 

  • Prandtl L. Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Zeitschr. Angew. Math. Mech., 8(2):85–106, 1928.

    Article  MATH  Google Scholar 

  • Prashant A. and Penumadu D. Effect of overconsolidation and anisotropy of kaolin clay using true triaxial testing. Soils Found., 45(3):71–82, 6 2005.

    Google Scholar 

  • Rendulic L. Ein Grundgesetz der Tonmechanik und sein experimenteller Beweis. Der Bauingenieur, 18(31/32):459–467, 8 1937.

    Google Scholar 

  • Roscoe K.H., Schofield A.N., and Wroth C.P. On the yielding of soils. Géotechnique, 8:22–53, 1958.

    Article  Google Scholar 

  • Schofield A. Disturbed Soil Properties and Geotechnical Design. Thomas Telford, London, 2005.

    Book  Google Scholar 

  • Schofield A. and Wroth P. Critical State Soil Mechanics. Mc Graw-Hill, London, 1968.

    Google Scholar 

  • Shimizu M. Effect of overconsolidation on dilatancy of a cohesive soil. Soils Found., 22(4):121–135, 12 1982.

    Google Scholar 

  • Skempton A.W. Residual strength of clays in landslides, folded strata and the laboratory. Géotechnique, 35(1):3–18, 1985.

    Article  Google Scholar 

  • Suklje L. Rheological Aspects of Soil Mechanics. Wiley, London, 1969.

    Google Scholar 

  • Terzaghi K. New facts about surface friction. Phys. Rev., 16(1):54–61, 1920.

    Article  Google Scholar 

  • Terzaghi K. Erdbaumechanik auf bodenphysikalischer Grundlage. Deuticke, Leipzig and Wien, 1925.

    MATH  Google Scholar 

  • Terzaghi K. The static rigidity of plastic clays. J. Rheol., 2(3):253–262, 1931.

    Article  Google Scholar 

  • Topolnicki M., Gudehus G., and Mazurkiewicz B.K. Observed stress-strain behaviour of remoulded saturated clay under plane strain conditions. Géotechnique, 40(2):155–187, 1990.

    Article  Google Scholar 

  • Towhata I., Kuntiwattanakul P., and Kobayashi H. A preliminary study on heating of clays to examine possible effects of temperature on soil-mechanical properties. Soils Found., 33(4):184–190, 12 1993.

    Google Scholar 

  • von Wolffersdorff P.-A. A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive-Frict. Mater., 1:251–271, 1996.

    Article  Google Scholar 

  • Wood D.M. Explorations of principal stress space with kaolin in a true triaxial apparatus. Géotechnique, 25(4):783–797, 1975.

    Article  Google Scholar 

  • Wu W., Bauer E., Niemunis A., and Herle I. Visco-hypoplastic models for cohesive soils. In Kolymbas, editor, Modern Approaches to Plasticity, pages 365–383. Elsevier, Amsterdam, 1993.

    Google Scholar 

  • Yashima A., Leroueil S., Oka F., and Guntoro I. Modelling temperature and strain rate dependent behavior of clays: One dimensional consolidation. Soils Found., 38(2):63–73, 6 1998.

    Google Scholar 

  • Bjerrum L. Problems of soil mechanics and construction on soft clays. In State-of-the-Art Report to Sess. IV, 8th Int. Conf. Soil Mech. Found. Engg., pages 1–53. Moscow, 1973.

    Google Scholar 

  • Grandas-Tavera C.E. Dynamische Konsolidierung von granularen wassergesä- ttigten Böden. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, 2010, Under preparation.

    Google Scholar 

  • Hvorslev M. J. Ueber die Festigkeitseigenschaften gestörter bindiger Böden. Number 45. Danmarks Naturvidenskabelige Samfund, Ingeniorvidenskabelige Skrifter A, 1937.

    Google Scholar 

  • Hvorslev M.J. Physical components of the shear strength of saturated clays. Res. Conf. Shear Strength and Cohesive Soils, page 169. Colorado, 1960.

    Google Scholar 

  • Klobe B. Eindimensionale Kompression und Konsolidation und darauf basierende Verfahren zur Setzungsprognose. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 128, 1992.

    Google Scholar 

  • Kolymbas D. Ein nichtlineares viskoplastisches Stoffgesetz für Böden. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 77, 1978.

    Google Scholar 

  • Krieg S. Viskoses Bodenverhalten von Mudden, Seeton und Klei. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 150, 2000.

    Google Scholar 

  • Leinenkugel H.J. Deformations- und Festigkeitsverhalten bindiger Erdstoffe, experimentelle Ergebnisse und ihre physikalische Deutung. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 66, 1976.

    Google Scholar 

  • Libreros-Bertini A.B. Hypo-und viskohypoplastische Modellierung von Kriech-und Rutschbewegungen, besonders infolge Starkbeben. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 165, 2006.

    Google Scholar 

  • Niemunis A. A visco-plastic model for clay and ist FE- implementation. In Resultats Recents en Méchanique des Soils et des Roches, pages 151–162. XI Colloque Franco-Polonais, Politechnica Gdanska, 1992.

    Google Scholar 

  • Roscoe K.H. and Burland J.B. On the generalized stress-strain behaviour of ‘wet’ clay. Eng. Plast., 535–609, 1968.

    Google Scholar 

  • Rowe P.W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. In Proceedings of the Royal Society, pages 500–527. 1962.

    Google Scholar 

  • Shibata T. and Karube D. Influence of the variation of the intermediate principal stress on the mechanical properties of normally consolidated clays. In Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, volume I. 1965.

    Google Scholar 

  • Sturm H. Stabilisation Behaviour of Cyclically Loaded Shallow Foundations for Offshore Wind Turbines. PhD thesis, University of Karlsruhe, 2009. URL http://uvka.ubka.uni-karlsruhe.de/.

  • Terzaghi K. The shearing resistance of saturated soils and the angle between the planes of shear. In Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering, volume I, pages 54–56, 1936.

    Google Scholar 

  • Topolnicki M. Observed Stress-Strain Behaviour of Remoulded Saturated Clay and Examination of Two Constitutive Models. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 107, 1987. Habilitation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Gudehus .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gudehus, G. (2011). Simple peloids. In: Physical Soil Mechanics. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36354-5_3

Download citation

Publish with us

Policies and ethics