Skip to main content

Axi-symmetric evolutions

  • Chapter
  • First Online:
Physical Soil Mechanics

Abstract

Axi-symmetric evolutions can occur in the lab and in situ, they are important for validation, design and technologies. Using again attractors in the large, this chapter is less a report on successful applications than an outline of what could further be done. Axial symmetry can arise with suitable initial and boundary conditions and can get lost with bifurcations towards critical phenomena. Axi-symmetric solutions will also serve as a support of interpolations for evolutions with two symmetry planes (Sects. 15.1 and 15.2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alshibli K.A., Sture S., Costes N.C., Frank M.L., Lankton M.R., Batiste S.N., and Swanson R.A. Assessment of localized deformations in sand using X-ray computed tomography. Geotech. Test. J., 23(3):274–299, 9 2000.

    Article  Google Scholar 

  • Bak P., Tang C., and Wiesenfeld K. Self-organized criticality: An explanation of 1/f noise. Phys. Rev. Lett., 59(4):381–384, 1987.

    Article  MathSciNet  Google Scholar 

  • Cox A. D., Eason G., and Hopkins H.G. Axially symmetric plastic deformation in soils. Phil. Trans. Roy. Soc., 254:1–45, 1961.

    Article  MathSciNet  Google Scholar 

  • Cudmani R. Anwendung der Hypoplastizität zur Interpretation von Drucksondierwiderständen in nicht-bindigen Böden. Geotechnik, 19(4):266–273, 1996.

    Google Scholar 

  • Cudmani R. and Sedlacek G. Analytische und numerische Standsicherheitsanalyse der Schlitzwandherstellung in einem weichen marinen Ton in Oslo, Norwegen. Geotechnik, 29(3):272–288, 2006.

    Google Scholar 

  • Desrues J., Chambon R., Mokni M., and Mazerolle F. Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique, 46(3):529–546, 1996.

    Article  Google Scholar 

  • Gudehus G. and Nübel K. Evolution of shear bands in sand. Géotechnique, 54(3):187–201, 2004.

    Google Scholar 

  • Hicher P.Y. and Wahyudi H. Microstructural analysis of strain localisation in clay. Comput. Geotech., 16:205–222, 1994.

    Article  Google Scholar 

  • Huber G. and Wienbroer H. Vibro-viscosity and granular temperature of cylindrical grain skeletons-experiments. In M.J. Herrmann, R. Garcia-Rojo and S. McNamara, editors, Powders and Grains 05, pages 287–290. Balkema, Rotterdam, 2005.

    Google Scholar 

  • Jenike A.W. Steady gravity flow of frictional-cohesive solids in converging channels. J. Appl. Mech., 31:5–11, 3 1964.

    Google Scholar 

  • Mandl G. Mechanics of Tectonic Faulting, Models and Basic Concepts. Elsevier, Amsterdam, 1988.

    Google Scholar 

  • Persson B.N.J. Sliding Friction - Physical Principles and Applications. Springer, Berlin, 2 edition. 2000b.

    Google Scholar 

  • Rendulic L. Ein Grundgesetz der Tonmechanik und sein experimenteller Beweis. Der Bauingenieur, 18(31/32):459–467, 8 1937.

    Google Scholar 

  • Roscoe K.H. The influence of strains in soil mechanics. Géotechnique, 20(2):129–170, 1970.

    Article  Google Scholar 

  • Stazhevskii S.B. On the contribution of ring structures to the stress-strain state of the lithosphere and to metallogeny. Fysicheskaya Mesomechanika, 8:65–70, 2005. In Russian.

    Google Scholar 

  • Stazhevskii S.B. Ring structures as a source of seismicity. Fysicheskaya Mesomechanika, 9:23–32, 2006. In Russian.

    Google Scholar 

  • Vielsack P. and Hartung A. An example for the orbital stability of permanently disturbed non-smooth motions. Zeitschr. Angew. Math. Mech., 79(6): 389–397, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  • Wieghardt K. Ueber einige Versuche an Strömungen in Sand. Ing.-Archiv, 20:109–115, 1952.

    Article  Google Scholar 

  • Cudmani R. Statische, alternierende und dynamische Penetration in nichtbindigen Böden. PhD thesis, Institute Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 152, 2001.

    Google Scholar 

  • Cudmani R. and Sturm H. An investigation of the tip resistance in granular and soft soils during static, alternating and dynamic penetration. In Proceedings of the International Conference on Vibratory Driving and Deep Soil Compaction, pages 221–231. 2006.

    Google Scholar 

  • Cudmani R., Huber G., and Gudehus G. A mechanical model for the investigation of the vibro-drivability of piles in cohesionless soils. In A. Holeyman et al., editor, Proceedings of the International Conference on Vibratory Driving and Deep Soil Compaction, pages 45–52. Louvain, 2002.

    Google Scholar 

  • Deman F. Achsensymmetrische Spannungs- und Verformungsfelder in trockenem Sand. PhD thesis, Institute of Soil Mechanics and Rock Mechanics University of Karlsruhe, Heft 62, 1975.

    Google Scholar 

  • Dierssen G. Ein bodenmechanisches Modell zur Beschreibung des Vibrationsrammens in körnigen Böden. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 133, 1994.

    Google Scholar 

  • Haar A. and von Karman Th. Plastic deformations in soils. Nachr. Ges. Wiss. Gött., page 204, 1909.

    Google Scholar 

  • Higo Y. Instability and Strain Localization Analysis of Water-saturated Clay by Elasto-viscoplastic Constitutive Models. PhD thesis, Soil Mechanics, Department of Civil Engineering, Kyoto Unversity, 2003.

    Google Scholar 

  • Hvorslev M. J. Ueber die Festigkeitseigenschaften gestörter bindiger Böden. Number 45. Danmarks Naturvidenskabelige Samfund, Ingeniorvidenskabelige Skrifter A, 1937.

    Google Scholar 

  • Janssen H.A. Versuche über Getreidedruck in Silozellen. Zeitschr. d. Vereines deutscher Ingenieure, 1045, 1895.

    Google Scholar 

  • Kudella P. Mechanismen der Bodenverdrängung beim Einpressen von Fluiden zur Baugrundverfestigung. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 132, 1994.

    Google Scholar 

  • Kuntsche K. Materialverhalten von wassergesättigtem Ton bei ebenen und zylindrischen Verformungen. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 91, 1982.

    Google Scholar 

  • Mahutka K.-P., König F., and Grabe J. Numerical modelling of pile jacking, driving and vibratory driving. In T. Triantafyllidis, editor, Numerical Modelling of Construction Processer in Geotechnical Engineering for Urban Environment, pages 235–246. Bochum, 2006.

    Google Scholar 

  • Mazurkiewicz B.K. Skin friction on model piles in sand. Technical Report 25, Danish Geotechnical Institute, Copenhagen, 1968.

    Google Scholar 

  • Meier T. Application of Hypoplastic and Viscohypoplastic Constitutive Models for Geotechnical Problems. PhD thesis, Institute of Soil Mechanics and Rock Mechanics University of Karlsruhe, 2009.

    Google Scholar 

  • Rebstock D. Hypoplastic simulation of piles and column foundations. In H. Brandl and F. Kopf, editors, 16th Eur. Young Geot. Engineers Conf., pages 303–312. Vienna, 2004.

    Google Scholar 

  • Rebstock D. Versagensmechanismen von Pfählen unter zyklischer Belastung. 29. Baugrundtagung 2006, Forum für junge Geotechnik- Ingenieure, 2006. available online.

    Google Scholar 

  • Rebstock D. Stressing and Relaxation of Sand. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, 2010, under preparation.

    Google Scholar 

  • Rübel S. Evolution of State and Shape of Viscous Formations. PhD thesis, 2010, under preparation.

    Google Scholar 

  • Schwarz P.Beitrag zum Tragverhalten von Verpressfählen mit kleinem Durchmesser unter axialer zyklischer Belastung. PhD thesis, Lehrst. und Prüfamt für Grundbau, Bodenmech. und Felsmech. der TU München, München, 2002.

    Google Scholar 

  • Senneset K., Janbu N., and Svano G. Strength and deformation parameters from cone penetration tests. In Proceedings on the 2th European Symposium Penetration Testing, pages 863–870. Rotterdam, 1982.

    Google Scholar 

  • Tejchman J. Modelling of Shear Localisation and Autogeneous Dynamic Effects in Granular Bodies. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 140, Habilitation, 1997.

    Google Scholar 

  • Wernick E. Tragfähigkeit zylindrischer Anker in Sand unter besonderer Berücksichtigung des Dilatanzverhaltens. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 75, 1978.

    Google Scholar 

  • Winter H. Fliessen von Tonböden: Eine mathematische Theorie und ihre Anwendung auf den Fliesswiderstand von Pfählen. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 82, 1979.

    Google Scholar 

  • Wu W. Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe. PhD thesis, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Gudehus .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gudehus, G. (2011). Axi-symmetric evolutions. In: Physical Soil Mechanics. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36354-5_14

Download citation

Publish with us

Policies and ethics