Skip to main content

Plane-parallel evolutions with SSI

  • Chapter
  • First Online:
Physical Soil Mechanics

Abstract

Soil structure interactions (SSIs) are rarely plane-parallel, but often assumed so for calculations. This chapter leads beyond conventional models, and is more an outline of what could be done than a report on successful applications. Plane-strain model tests with structures are spoiled by parasitary wall forces, structures and ground in situ have rarely the same cross section over lengths which suffice for plane-parallelity. Attractors in the large are employed with the assumed symmetry, but how they can be attained or get lost cannot be judged within this frame (cf. the introduction of Chaps. 12 and 15).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Caquot A. and Kérisel J. Traité de Méchanique des Sols. Gauthier-Villars, Paris, 1956.

    Google Scholar 

  • De Beer E.E. The scale effect in the transposition of the results of deep-sounding tests on the ultimate bearing capacity of piles and caisson foundations. Géotechnique, 13:39–75, 1963.

    Article  Google Scholar 

  • Gibson R.E. The analytical method in soil mechanics. Géotechnique, 24:115–140, 1974.

    Article  Google Scholar 

  • Gudehus G. Bodenmechanik. Ferdinand Enke, Stuttgart, 1981.

    Google Scholar 

  • Gudehus G. Earth Pressure Determination, volume 1: Fundamentals, pages 407–436. Ernst und Sohn, Berlin, 2002.

    Google Scholar 

  • Gudehus G. A visco-hypoplastic relation for soft soil. Soils Found., 44(4):11–25, 8 2004b.

    Google Scholar 

  • Gudehus G. and Nübel K. Evolution of shear bands in sand. Géotechnique, 54(3):187–201, 2004.

    Google Scholar 

  • Kolymbas D. Vereinfachte statische Berechnung der Firste eines Tunnels in massigem Fels. Rock Mech., 14:201–207, 1982.

    Article  Google Scholar 

  • Peck R.B. Advantages and limitations of the observational method in applied soil mechanics. Géotechnique, 19(2):171–187, 1969.

    Article  MathSciNet  Google Scholar 

  • Rankine W.J.M. On the stability of loose earth. Phil. Trans. Roy. Soc. London, 147(1): 9–27, 1856.

    Google Scholar 

  • Sokolovski V.V. Statics of Soil Media. Butterworths Scientific Publications, London, 1960. Translation by Jones and Schofield.

    Google Scholar 

  • Tatsuoka F., Nakamura S., Huang C.C., and Tani K. Strength anisotropy and shear band direction in plane strain tests on sand. Soils Found., 30(1):35–54, 1990.

    Google Scholar 

  • Terzaghi K. Theoretical Soil Mechanics. J Wiley, New York, 1940.

    Google Scholar 

  • Vardoulakis I., Graf B., and Gudehus G. Trap-door problem with dry sand: A statical approach based upon model test kinematics. Inst. J. Numer. Anal. Meth. Geomech., 5:57–78, 1981.

    Article  Google Scholar 

  • Whittle A.J. Role of Soil Modelling in Geotechnical Predictions. Columbia University Press, New York City, 2006.

    Google Scholar 

  • Winkler E. Elastizitaet und Festigkeit. Dominicus, Prag, 1867.

    Google Scholar 

  • Wu T.-H. and Berman S. Earth pressure measurements in open cut: Contract D-8, Chicago subway. Géotechnique, 3(6):248–258, 1953.

    Article  Google Scholar 

  • Augustin S. Untersuchungen zur Lagestabilität des Schotteroberbaus. PhD thesis, Institute of Soil Mechanics and Rock Mech., University of Karlsruhe, Heft 154, 2002.

    Google Scholar 

  • Bjerrum L. Problems of soil mechanics and construction on soft clays. In State-of-the-Art Report to Sess. IV, 8th Int. Conf. Soil Mech. Found. Engg., pages 1–53. Moscow, 1973.

    Google Scholar 

  • Bühler M.M. Experimental and Numerical Investigation of Soil-Foundation-Structure Interaction during Monotonic, Alternating and Dynamic Loading. PhD thesis, Institute of Soil Mechanics and Rock Mechanics University of Karlsruhe, Heft 166, 2006.

    Google Scholar 

  • Coulomb M. Essai sur une application des regles des Maximis et Minimis a quelques Problemes de Statique, relatifs a l’Architecture. Editions Science et Industrie, Paris, 1773. reprint 1971.

    Google Scholar 

  • Cuevas J.A. The floating foundation of the new building for the National Lottery of Mexico: An actual size study of the deformations of a flocculent-structured deep soil. In Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, volume 1 pages 294–301. Cambridge, MA, 1936 (Volume 4).

    Google Scholar 

  • Darwin G.H. On the horizontal thrust of a mass of sand. In Minutes of the Proceedings Instituation of Civil Engineering, pages 350–378. 1883.

    Google Scholar 

  • De Wit J.C.W.M. and Lengkeek H.J. Full scale test on environmental impact of diaphragm wall trench installation in Amsterdam. Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, 2002. available online.

    Google Scholar 

  • Gäßler G. Vernagelte Geländesprünge – Tragverhalten und Standsicherheit. PhD thesis, Veröff. Inst. Boden-u. Felsmech. Univ. Karlsruhe, Heft 108, 1987.

    Google Scholar 

  • Graf B. Theoretische und experimentelle Ermittlung des Vertikaldrucks auf eingebettete Bauwerke. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 96, 1984.

    Google Scholar 

  • Herle I. and Tejchman J. Effects of grain size and pressure level on bearing capacity of footings on sand. Deform. Prog. Fail. Geomech., 781–786, 1997.

    Google Scholar 

  • Janssen H.A. Versuche über Getreidedruck in Silozellen. Zeitschr. d. Vereines deutscher Ingenieure, 1045, 1895.

    Google Scholar 

  • Jovanovic M. Historische Holzgründungen – Tragverhalten in weichem Baugrund. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 153, 2002.

    Google Scholar 

  • Koiter W.T. General theorems for plastic solids. Prog. Solid Mech., 165, 1958.

    Google Scholar 

  • Kort D.A. Steel Sheet Pile Walls in Soft Soil. PhD thesis, Technical University Delft, Delft, 2002.

    Google Scholar 

  • Krieg S., Lächler W., and Siebler G. Geotechnische Besonderheiten bei einer grossen Baugrube mit Randbebauung in Konstanzer Seeton. Technical Report 36, Lehrstuhl und Prüfamt für Grundbau, Bodenmech. und Felsmech. der TU München, 2004.

    Google Scholar 

  • Libreros-Bertini A.B. Hypo-und viskohypoplastische Modellierung von Kriech-und Rutschbewegungen, besonders infolge Starkbeben. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 165, 2006.

    Google Scholar 

  • Maisch K. Bodenstabilisierung durch Einpressen von Trockengranulaten. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 149, 2000.

    Google Scholar 

  • Mayer P.-M. Verformungen und Spannungsänderungen im Boden durch Schlitzwandherstellung und Baugrubenaushub. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 151, 2000.

    Google Scholar 

  • Meier T. Application of Hypoplastic and Viscohypoplastic Constitutive Models for Geotechnical Problems. PhD thesis, Institute of Soil Mechanics and Rock Mechanics University of Karlsruhe, 2009.

    Google Scholar 

  • Mélix P. Modellversuche und Berechnungen zur Standsicherheit ober-flä-chen- naher Tunnel. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 103, 1987.

    Google Scholar 

  • Milligan G.W.E. The Behaviour of Rigid and Flexible Retaining Walls in Sand. PhD thesis, University of Cambridge, Engineering Department, 1974.

    Google Scholar 

  • Nübel K. Experimental and Numerical Investigation of Shear Localization in Granular Material. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 159, 2002.

    Google Scholar 

  • Ovesen N.K. The use of physical models in design. In Proceedings of the 7th European Conference on Soil Mechanics and Foundation Engineering, Brighton, Vol. 4, Discussion., pages 319–323. 1979.

    Google Scholar 

  • Prandtl L. Ueber die Härte plastischer Körper. Nachr. Ges. d. Wiss., Math. Phys. Kl., Göttingen, 74, 1920.

    Google Scholar 

  • Schauppel F. Numerische Optimierung einer Einpresstechnologie zum Wiederanheben setzungsgeschädigter Verkehrswege. Master’s thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, 2004.

    Google Scholar 

  • Slominski C. Validierung von Rechenmodellen zur Scherzonenentwicklung mit Versuchen im Labor und in situ. PhD thesis, Veröff. Inst. Boden- u. Felsmech. Univ. Karlsruhe, Heft 169, 2007.

    Google Scholar 

  • Tejchman J. Modelling of Shear Localisation and Autogeneous Dynamic Effects in Granular Bodies. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 140, Habilitation, 1997.

    Google Scholar 

  • von Wolffersdorff P.-A. Verformungsprognosen für Stützkonstruktionen. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 141, Habilitation, 1997.

    Google Scholar 

  • Wichman B.G.H.M. and Allersma H.G.B. Onderhogen van zandbed in geocentrifuge. Technical report, 2004.

    Google Scholar 

  • Winter H. Fliessen von Tonböden: Eine mathematische Theorie und ihre Anwendung auf den Fliesswiderstand von Pfählen. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 82, 1979.

    Google Scholar 

  • Osinov V.A. and Loukachev I. Settlement of liquefied sand after a strong earthquake. In Compaction of Soils, Granulates and Powders, pages 297–306. 2000.

    Google Scholar 

  • Schlegel T. Anwendung einer neuen Bettungsmodultheorie zur Berechnung biegsamer Gründungen auf Sand. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 98, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Gudehus .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gudehus, G. (2011). Plane-parallel evolutions with SSI. In: Physical Soil Mechanics. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36354-5_13

Download citation

Publish with us

Policies and ethics