Advertisement

In Situ Microscopy

Part of the Springer Laboratory book series (SPLABORATORY)

Abstract

Each type of electron microscope is suitable not only for studying the morphologies of polymers but also for visualising changes in these materials under different and varying conditions. Such experimental tests are commonly known as in situ techniques. Beside the effects of electron irradiation and different ambient atmospheres, micromechanical in situ tests are discussed here in some detail. Some examples are presented after describing the technical equipment used for in situ investigations, including miniaturised deformation devices for common electron microscopes, which enable tensile tests of ultra- and semi-thin specimens to be performed at low or high temperatures. SEM and (particularly) ESEM are very effective ways to study deformation, crack propagation and fracture processes.The TEM and HVTEM techniques permit higher resolution to be achieved and can be used to characterise effects at the micro- as well as the nanoscale. AFM can be applied tomonitor micromechanical deformation processes without the limiting factors associated with EM, such as vacuum and electron irradiation damage.

Keywords

Atomic Force Microscope Deformation Structure Electron Irradiation Environmental Scanning Electron Microscope Constant Strain Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Michler GH (1992) Kunststoff-Mikromechanik: Morphologie, Deformations- und Bruchmechanismen. Carl Hanser, MünchenGoogle Scholar
  2. 2.
    Pearce R, Vancso GJ (1998) J Polym Sci Polym Phys 36:2643CrossRefGoogle Scholar
  3. 3.
    Michler GH (1993) Appl Spectrosc Rev 28:327CrossRefGoogle Scholar
  4. 4.
    Michler GH (1995) Phys Status Solidi A 150:185CrossRefGoogle Scholar
  5. 5.
    Michler GH (1995) Trend Polym Sci 3:124Google Scholar
  6. 6.
    Michler GH (1996) In: Salamone JC (ed) Polymer materials encyclopedia, vol 3 (D–E). CRC Press, Boca Raton, FLGoogle Scholar
  7. 7.
    Michler GH (1998) Polym Adv Technol 9:812CrossRefGoogle Scholar
  8. 8.
    Kim GM, Michler GH (1998) Polymer 39:5689, 5699CrossRefGoogle Scholar
  9. 9.
    Michler GH (1999) J Macromol Sci Phys B38:787Google Scholar
  10. 10.
    Michler GH (2001) J Macromol Sci Phys B40:277Google Scholar
  11. 11.
    Michler GH (2005) In: Michler GH, Baltá-Calleja FJ (eds) Mechanical properties of polymers based on nanostructure and morphology. Taylor & Francis, Boca Raton, FL, Ch 10, pp 379–432Google Scholar
  12. 12.
    Kim GM, Lee DH (2001) J Appl Polym Sci 82:785CrossRefGoogle Scholar
  13. 13.
    Starke JU, Godehardt R, Michler GH, Bucknall CB (1997) J Mater Sci 31:1855CrossRefGoogle Scholar
  14. 14.
    Kim GM, Michler GH, Rösch J, Mühlhaupt R (1998) Acta Polym 49:88CrossRefGoogle Scholar
  15. 15.
    Michler GH, Godehardt R (2000) Cryst Res Technol 35:863CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Personalised recommendations