Scanning Electron Microscopy (SEM)

Part of the Springer Laboratory book series (SPLABORATORY)


Today, scanning electron microscopy (SEM) is a versatile technique used in many industrial labs, as well as for research and development. Due to its high lateral resolution, its great depth of focus and its facility for X-ray microanalysis, SEM is often used in materials science – including polymer science – to elucidate the microscopic structure or to differentiate several phases from each other. After a brief historic overview, this chapter explains the assembly and the mode of operation of SEM, which deviates from standard microscopes. This includes descriptions of the fundamentals of electron optics, the electron optical column, and the physical basics of electron–specimen interactions, which aid the understanding of contrast formation and charging effects. Because it is important to know the factors that influence X-ray microanalysis, a separate section about the origins of X-ray spectra and their interpretation has also been added. A discussion of environmental scanning electron microscopy (ESEM™) – a special development of SEM that is particularly useful when nonconducting or “wet” samples are to be examined – completes the chapter.


Primary Electron Environmental Scan Electron Microscope Aperture Angle Pole Piece Specimen Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Knoll M (1935) Z Techn Physik 16(11):467Google Scholar
  2. 2.
    Ardenne Mv (1938): Z Phys 109(9-10):553CrossRefGoogle Scholar
  3. 3.
    Ardenne Mv (1938) Z Techn Phys 19:407Google Scholar
  4. 4.
    Ardenne Mv (1940): Elektronen-Übermikroskopie (in German). Springer, BerlinGoogle Scholar
  5. 5.
    Zworykin VK, Hiller J, Snyder RL (1942) ASTM Bull 117:15Google Scholar
  6. 6.
    McMullan D (1952) PhD thesis, University of Cambridge, CambridgeGoogle Scholar
  7. 7.
    Smith KCA (1956) PhD thesis, University of Cambridge, CambridgeGoogle Scholar
  8. 8.
    Everhardt TE, Thornley RFM (1960) J Sci Inst 37:246CrossRefGoogle Scholar
  9. 9.
    Castaing R (1951) Application des sondes électroniques à une méthode d’analyse ponctuelle chimique et cristallographique. PhD thesis, University of Paris, ParisGoogle Scholar
  10. 10.
    Coslett VE, Duncumb P (1956). In: Sjöstrand FS, Rhodin J (eds) Proc Stockholm 11th Conf Electron Microsc. Almqvist and Wiksell, Stockholm, p 12Google Scholar
  11. 11.
    Danilatos GD (1983) Micron Microsc Acta 14(4):307CrossRefGoogle Scholar
  12. 12.
    Danilatos GD (1985) Scanning 7:26Google Scholar
  13. 13.
    Danilatos GD (1986) In: Bailey GD (ed) Proc 44th Annual Meeting EMSA. San Francisco Press, San Francisco, CA, p 630Google Scholar
  14. 14.
    Danilatos GD (1986) In: Bailey GD (ed.) Proc 44th Annual Meeting EMSA. San Francisco Press, San Francisco, CA, p 632Google Scholar
  15. 15.
    Reimer L (1998) Scanning electron microscopy: Physics of image formation and microanalysis, 2nd edn. Springer, BerlinGoogle Scholar
  16. 16.
    Lee RE (1993) Scanning electron microscopy and X-ray microanalysis. PTR Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  17. 17.
    Goldstein JI, Newbury DE, Echlin P, Joy DC, Fiori C, Lifshin E (1981) Scanning electron microscopy and X-ray microanalysis. Plenum, New YorkGoogle Scholar
  18. 18.
    Reed SJB (1993) Electron microprobe analysis, 2nd edn. Cambridge Univ. Press, CambridgeGoogle Scholar
  19. 19.
    Chandler JA (1987) X-Ray microanalysis in the electron microscope. In: Glauert AM (ed) Practical methods in electron microscopy, vol 5, part II. Elsevier, AmsterdamGoogle Scholar
  20. 20.
    Friel JJ (1995) X-Ray and image analysis in electron microscopy. Princeton GammaTech Inc., Princeton, NJGoogle Scholar
  21. 21.
    Russ JC (1984) Fundamentals of energy-dispersive X-ray analysis. Butterworths, LondonGoogle Scholar
  22. 22.
    Heinrich KFJ, Newbury DE (1991) Electron probe quantitation. Plenum, New YorkGoogle Scholar
  23. 23.
    Scott VD, Love G, Reed SJB (1995) Quantitative electron probe microanalysis, 2nd edn. Ellis Horwood, New YorkGoogle Scholar
  24. 24.
    Mancuso JF, Maxwell WB, Danilatos GD (1988) US Patent 4 785 182Google Scholar
  25. 25.
    Knowles WR, Schultz WG, Armstrong AE (1994) US Patent 5 362 964Google Scholar
  26. 26.
    Danilatos GD, Lewis GC (1989) US Patent 4 823 0062Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Personalised recommendations