Skip to main content

Computing Image with an Analog Circuit Inspired by the Outer Retinal Network

  • Chapter
Soft Computing in Measurement and Information Acquisition

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 127))

  • 208 Accesses

Abstract

The response of neurons of the visual system is much slower, by several orders of magnitude, than that of semiconductor devices. Frogs can, however, visually follow insects in real time and catch them. Such superior function is realized by a unique algorithm/architecture of visual systems of creatures, which provides engineers an important insight to develop a novel image processing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bair, W., Koch, C. (1991): An analog VLSI chip for finding edges from zero-crossings. NIPS 3, 399–405

    Google Scholar 

  2. Baylor, D.A., Fuortes, M.G.F., O’Bryan, P.M. (1971): Receptive fields of cones in the retina of the turtle. J Physiol Lond 214, 256–294

    Google Scholar 

  3. Douglas, R., Mahowald, M., Mead, C. (1995): Neuromorphic analogue VLSI. Annual Review Neuroscience 18, 255–258

    Article  Google Scholar 

  4. Dowling, J.E. (Ed.) (1987): The retina: an approachable part of the brain. Belknap Press of Harvard University Press, Cambridge Massachusetts

    Google Scholar 

  5. Dowling, J.E., Werblin, F.S. (1969): Organization of the retina of the mudpuppy. Necturus maculosus I. Synaptic structure. Journal of Neurophysiology 32, 315338

    Google Scholar 

  6. Hare, W.A., Owen, G.W. (1990): Spatial organization of the bipolar cell’s receptive field in the retina of the tiger salamander. Journal of Physiology London 421, 223–245

    Google Scholar 

  7. Kameda, K., Honda, A., Yagi, T. (1999): Real time image processing with an analog vision chip systems. International Journal of Neural Systems 9, 423–428

    Article  Google Scholar 

  8. Kaneko, A. (1973): Receptive field organization of bipolar and amacrine cells in the goldfish retina. Journal of Physiology London 235, 133–153

    Google Scholar 

  9. Kobayashi, H., Matsumoto, T., Yagi, T., Shimmi, T. (1993) • Image processing regularization filters on layered architecture. Neural Networks 6, 327–350

    Google Scholar 

  10. Koch, C., Marroquin, J., Yuille, A. (1986): Analog “neuronal” networks in early vision. Proceedings of National Academy of Science USA 83, 4263–4267

    Article  MathSciNet  Google Scholar 

  11. Koch, C., Li, H. (Eds.) (1995): Vision chips: implementing vision algorithms with analog VLSI circuits. IEEE computer society press

    Google Scholar 

  12. Mahowald, M. (Ed.) (1994): An analog VLSI system for stereoscopic vision. Kluwer Academic Publishers

    Google Scholar 

  13. Marchiafava, P.L. (1978): Horizontal cells influence membrane potential of bipolar cells in the retina of the turtle. Nature 275, 141–142

    Article  Google Scholar 

  14. Mead, C. (1989): Analog VLSI and Neural Systems. Addison-Wesley

    Google Scholar 

  15. Naka, K.-I., Rushton, W.A.H. (1967): S-potential from luminosity units in the retina of the fish ( Cyprinidae ). Journal of Physiology 192, 437–461

    Google Scholar 

  16. Negishi, K., Drujan, B. (1979): Reciprocal changes in center and surrounding S-potentials of fish retina in response to dopamine. Neurochemical Research 4, 313–318

    Article  Google Scholar 

  17. Ohshima, S., Yagi, T., Funahashi, Y. (1995): Computational studies on the interaction between red cone and H1 0 cell. Vision Research, 149–160

    Google Scholar 

  18. Poggio, T., Koch, C. (1985): Ill-posed problems in early vision: from computational theory to analogue networks. Proceedings of Royal Society London B 226, 303–323

    Article  MATH  Google Scholar 

  19. Poggio, T., Torre, V., Koch, C. (1985): Computational Vision and Regularization Theory. Nature 317, 314–319

    Article  Google Scholar 

  20. Teranishi, T., Negishi, K., Kato, S. (1983): Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina. Nature 301, 234–246

    Article  Google Scholar 

  21. Toyada, J.-I., Tonosaki, K. (1978): Effect of polarization of horizontal cells on the on-center bipolar cell of the carp retina. Nature 276, 399–400

    Article  Google Scholar 

  22. Yagi, T. (1986): Interaction between the soma and the axon terminal of retinal horizontal cells in Cyprinus carpio. Journal of Physiology London 375, 121–135

    Google Scholar 

  23. Yagi, T., Ohshima, S., Funahashi, Y. (1997): The role of retinal bipolar cell in early vision: an implication with analogue networks and regularization theory. Biological Cybernetics, 163–171

    Google Scholar 

  24. Yagi, T., Matsumoto, T., Kobayashi, H. (1998): Parallel analog image processings: solving regularization problems with architecture inspired by the vertebrate retinal circuit. In: Leondes, C.T.(Ed.): Neural Network Systems Techniques and Applications, Academic Press, 201–285

    Google Scholar 

  25. Yagi, T., Kameda, S., lizuka, K. (1999): A parallel analog intelligent vision sensor with a variable receptive field. Systems and Computers in Japan 30, 1, 60–69

    Article  Google Scholar 

  26. Yang, X.L., Wu, S.M. (1991): Feedforward lateral inhibition: input-output relation of the horizontal cell to bipolar cell synapse in the tiger salamander retina. Proceedings of National Academy Science USA 88, 3310–3313

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kameda, S., Yagi, T. (2003). Computing Image with an Analog Circuit Inspired by the Outer Retinal Network. In: Reznik, L., Kreinovich, V. (eds) Soft Computing in Measurement and Information Acquisition. Studies in Fuzziness and Soft Computing, vol 127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36216-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36216-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53509-3

  • Online ISBN: 978-3-540-36216-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics