Skip to main content

Application of Evolutionary Algorithms to Combinatorial Library Design

  • Chapter

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 120))

Summary

The last deacde has seen a revolutionary change in the processes used to discover novel bioactive compounds in the pharmaceutical and agrochemical industries. This change is due to the introduction of automation techniques which allow tens or hundreds of thousands compounds to be synthesised simultaneously and then to be screened for activity rapidly. These techniques of combinatorial synthesis and high throughput screening have vastly increased the throughput of the traditional structure-activity cycle. Despite the initial enthusiasm for the methods, early results have been disappointing, producing fewer hits than were expected or hits that have undesirable properties to be suitable as new drugs or agrochemicals. It is now realised that the number of compounds that could potentially be considered as new bioactive compounds is enormous compared to the numbers that can be handled in practise, even using automated techniques. Thus, efficient and effective methods are required for designing the sets of compounds to be used in combinatorial syntheses and to be screened in high throughput screening experiments. It is not possible to explore such large search spaces systematically and hence many methods have been developed for designing combinatorial libraries. Evolutionary algorithms are well suited to search for solutions to large combinatorial problems and this chapter reviews the application of genetic algorithms, a sub-branch of evolutionary algorithms, to combinatorial library design.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fassina G. and Miertus S. (Eds) Combinatorial Chemistry and Technology. Principles, Methods and Applications, Marcel Dekker Inc., New York, 1999.

    Google Scholar 

  2. Martin Y.C. and Willett P. (Eds) Designing Bioactive Molecules, American Chemical Society, Washington DC, 1998.

    Google Scholar 

  3. Downs G.M. and Willett P. Similarity Searching in Databases of Chemical Structures, in Lipkowitz K.B. and Boyd D.B. (Eds). Reviews in Computational Chemistry, WileyVCH, New York, 1995, Volume 7, pp 1–66.

    Google Scholar 

  4. Valler M.J. and Green D. Diversity Screening Versus Focussed Screening in Drug Discovery, Drug Discovery Today, 2000, 5, 286–293.

    Article  Google Scholar 

  5. Clark D.E. (Ed) Evolutionary Algorithms in Molecular Design, Wiley-VCH: Weinheim, 2000.

    Google Scholar 

  6. Parrill A.L. Introduction to Evolutionary Algorithms in Clark, D.E. (Ed) Evolutionary Algoriths in Molecular Design, Wiley-VCH: Weinheim, 2000, ppl-13.

    Google Scholar 

  7. Gillet V.J. and Johnson A.P. Structure Generation for De Novo Design in Martin Y.C. and Willett P. (Eds) Designing Bioactive Molecules, American Chemical Society, Washington DC, 1998, pp 149–174.

    Google Scholar 

  8. Venkatasubramanian V., Chen K. and Caruthers J. Evolutionary Design of Molecules with Desired Properties Using the Genetic Algorithm, J. Chem. Inf. Comput. Sci., 1995, 35, 188–195.

    Google Scholar 

  9. Nachbar R.B. Molecular Evolution: a Hierarchical Representation for Chemical Topology and its Automated Manipulation, in Proceedings of the Third Annual Genetic Programming Conference, University of Wisconsin, Madison, Wisconsin, 22–25 July, 1998, pp 246–253.

    Google Scholar 

  10. Globus A., Lawton J., and Wipke, T. Automatic Molecular Design Uisng Evolutionary Techniques, Nanotechnology 1999, 10, 290–299.

    Article  Google Scholar 

  11. Blaney J.M., Dixon J.S. and Weininger D.J. Evolution of Molecules to Fit a Binding Site of Known Structure. Paper presented at the Molecular Graphics Society Meeting on Binding Sites: Characterising and Satisfying Steric and Chemical Restraints, York, UK, March 1993.

    Google Scholar 

  12. Glen R.C. and Payne A.W.R. A Genetic Algorithm for the Automated Generation of Molecules Within Constraints, J. Comput-Aided Mol. Des., 1995, 9, 181–202.

    Article  Google Scholar 

  13. LeapFrog is available from TRIPOS Inc., 1699 South Hanley Road, Suite 303, St. Louis, MO 63144.

    Google Scholar 

  14. Westhead D.R., Clark D.E., Frenkel D., Li J., Murray C.W., Robson B., Waszkowycz B. PRO_LIGAND: An Approach to De Novo Molecular Design. 3. A Genetic Algorithm for Structure Refinement, J. Comput-Aided Mol. Des., 1995, 9, 139–145.

    Article  Google Scholar 

  15. Brown R.D. Clark D.E. Genetic Diversity: Applications of Evolutionary Algorithms to Combinatorial Library Design, Exp. Opin. Ther. Patents, 1998, 8, 1447–1460.

    Article  Google Scholar 

  16. Weber L. Evolutionary Computational Chemistry: Application of Genetic Algorithms. Drug Discovery Today, 1998, 3, 379–385.

    Article  Google Scholar 

  17. Weber L. Molecular Diversity Analysis and Combinatorial Library Design in Clark D.E. (Ed) Evolutionary Algoriths in Molecular Design, Wiley-VCH: Weinheim, 2000, pp 137–157.

    Google Scholar 

  18. Walters W.P., Stahl M.T., and Murcko, M.A. Virtual screening–An overview. Drug Discovery Today, 1998, 3, 160–178.

    Article  Google Scholar 

  19. Bohm H.-J., and Schneider G., Eds. Virtual Screening for Bioactive Molecules, WileyVCH, Weinheinm, 2000.

    Google Scholar 

  20. Gillet V.J., Willett P. and Bradshaw, J. The Effectiveness of Reactant Pools for Generating Structurally Diverse Combinatorial Libraries. J. Chem. Inf. Comput. Sci. 1997, 37, 731–740.

    Google Scholar 

  21. Gillet V.J. and Nicolotti O. New algorithms for compound selection and library design Perspect. Drug Discov. Design, 2000, 20, 265.

    Article  Google Scholar 

  22. Jamois E.A., Hassan M. and Waldman M., Evaluation of Reagent-Based and Product-Based Strategies in the Design of Combinatorial Library Subsets. J. Chem. Inf. Comput. Sci., 2000, 40. 63.

    Google Scholar 

  23. Brown R.D. Descriptors for Diversity Analysis. Perspect. Drug Discov. Design. 1997, 7/8 31–49.

    Google Scholar 

  24. Barnard J.M., Downs G.M. and Willett P. Chemical Similarity Searching J. Chem. Inf. Comput. Sci., 1998, 38, 983–996.

    Google Scholar 

  25. Lajiness M.S. Dissimilarity-Based Compound Selection Techniques Perspect. Drug Discov. Design 1997, 7/8 65–84.

    Google Scholar 

  26. Dunbar Jr. J.B. Cluster-Based Selection. Perspect. Drug Discov. Design,1997,.7/8, 5163.

    Google Scholar 

  27. Mason J. S. and Pickett S.D. Partition-Based Selection. Perspect. Drug Discov. Design. 1997, 7/8 85–114.

    Google Scholar 

  28. Lewis R.A., Mason J.S. and McLay I.MSimilarity Measures for Rational Set Selection and Analysis of Combinatorial Libraries: The Diverse Property-Derived (DPD) Approach. J. Chem. Inf Comput. Sci., 1997, 37, 599–614.

    Google Scholar 

  29. Martin E.J., Blaney J.M., Siani M.S., Spellmeyer D.C., Wong A.K. and Moos W.H. Measuring Diversity–Experimental Design of Combinatorial Libraries for Drug Discovery. J. Med. Chem. 1995, 38, 1431–1436.

    Article  Google Scholar 

  30. Sheridan R.P., SanFeliciano S.G. and Kearsley, S.K. Designing Targeted Libraries with Genetic Algorithms, J. Mol. Graph. Model.,2000, 18 320–334,.

    Google Scholar 

  31. Agrafiotis, D.K., Lobanov V.S. and Rassokhin D.N. The Measurement of Molecular Diversity in In Bohm H.-J., and Schneider G., Eds. Virtual Screening for Bioactive Molecules, Wiley-VCH, Weinheinm, 2000, pp 265–300.

    Google Scholar 

  32. Zheng W., Hung S.T., Saunders J.T. and Seibel G.L. PICCOLO: A Tool for Combinatorial Library Design Via Multicriterion Optimization. In Pacific Symposium on Biocomputing 2000, Atlman R.B., Dunkar A.K., Hunter L., Lauderdale K. and Klein, T.E. (Eds). World Scientific

    Google Scholar 

  33. Lewis R.A. and Good A.C. Quantification of Molecular Similarity and Its Application to Combinatorial Chemistry, in Computer-Assisted Lead Finding and Optimization, van de Waterbeemd H., Testa B. and Folkers G. (Eds) Wiley-VCH: Weinheim, 1997, pp 137–156.

    Google Scholar 

  34. Sheridan R.P. and Kearsley, S.K. Using a Genetic Algorithm to Suggest Combinatorial Libraries, J. Chem. Inf. Comput. Sci., 1995, 35, 310–320.

    Google Scholar 

  35. Brown R. D. and Martin Y. C. Designing Combinatorial Library Mixtures using A Genetic Algorithm. J. Med. Chem. 1997, 40, 2304–2313.

    Article  Google Scholar 

  36. Gillet, V.J., Willett, P. and Bradshaw, J. Selecting Combinatorial Libraries to Optimise Diversity and Physical Properties. J. Chem. Inf. Comput. Sci. 1999, 39, 167–177.

    Google Scholar 

  37. Zheng W., Cho S.J. and Tropsha, A. Rational Combinatorial Library Design. 1. Focus-2D. A New Approach to the Design of Targeted Combinatorial Chemical Libraries. J Chem. Inf. Comput. Sci., 1998, 38, 251–258.

    Google Scholar 

  38. Cho S.J., Zheng W. and Tropsha, A. Rational Combinatorial Library Design. 2. Rational Design of Targeted Combinatorial Peptide Libraries Using Chemical Similarity Probe and the Inverse QSAR Approaches. J. Chem. Inf. Comput. Sci., 1998, 38, 259–268.

    Google Scholar 

  39. Weber L., Wallbaum S., Broger C. and Gubernator, K. A Genetic Algorithm for the Automated Generation of Molecules within Constraints, Angew. Chem. Int. Ed. Engl. 1995, 107, 2453–2454.

    Google Scholar 

  40. Weber, L. Molecular Diversity Analysis and Combinatorial Library Design In Evolutionary Algorithms in Molecular Design, Clark D. E. ( Ed.) Wiley-VCH, Weinheim, 2000, 137–157.

    Google Scholar 

  41. Singh J., Ator M.A., Jaeger E.P., Allen M.P., Whipple D.A., Soloweij J.E., Chowdhary S. and Treasurywala A.M. Application of Genetic Algorithms to Combinatorial Synthesis: A Computational Approach to Lead Identification and Lead Optimisation, J. Am. Chem. Soc. 1996, 118, 1669–1676.

    Article  Google Scholar 

  42. Yokobayashi Y., Ikebukuro K., McNiven S., and Karube I. Directed Evolution of Trypsin Inhibiting Peptides Using a Genetic Algorithm. J. Chem. Soc. Perkin Trans. I, 1996, 2435–2437.

    Google Scholar 

  43. Gobbi A. Poppinger D. Genetic Optimization of Combinatorial Libraries. Biotechnol. Bioeng. 1998, 61, 47–54.

    Article  Google Scholar 

  44. Schneider G., Clément-Chomiene O., Hilfilger L., Schneider P., Kirsch S., Böhm H.-J. and Neidhart, W. Virtual Screening for Bioactive Molecules by Evolutionary De Novo Design, Angew. Che. Int. Ed. 2000, 39, 4130–4133.

    Article  Google Scholar 

  45. Schneider G., Lee M.L., Stahl M. and Schneider P. De Novo Design of Molecular Architectures by Evolutionary Assembly of Drug-derived Building Blocks J. Comput-Aided Mol. Design, 2000, 14, 487–494.

    Article  Google Scholar 

  46. Schneider G. Evolutionary Molecular Design in Virtual Fitness Landscapes In Bohm H.-J., and Schneider G., Eds. Virtual Screening for Bioactive Molecules, Wiley-VCH, Weinheinm, 2000, pp 161–186.

    Google Scholar 

  47. WDI: The World Drug Index is available from Derwent Information, 14 Great Queen St., London W2 5DF, UK.

    Google Scholar 

  48. Martin E.J., and Critchlow R.E. Beyond Mere Diversity: Tailoring Combinatorial Libraries for Drug Discovery. J. Comb. Chem. 1999, 1, 32–45.

    Google Scholar 

  49. Brown J.D., Hassan M., Waldman M. Combinatorial Library Design for Diversity, Cost Efficiency, and Drug-like Character. J. Mol Graph. Model. 2000, 18, 427–437.

    Article  Google Scholar 

  50. Rassokhin D.N. and Agrafiotis D.K. Kolmogorov-Smirnov Statistic and its Application in Library Design, J. Mol Graph. Model. 2000, 18, 427–437.

    Article  Google Scholar 

  51. Bravi G., Green D.V.S, Hann M.A. and Leach, A.R. PLUMS: A Program for the Rapid Optimization of Focused Libraries., J. Chem. Inf. Comput. Sci., 2000, 40, 1441–1448.

    Google Scholar 

  52. Fonseca, C.M. and Fleming, P.J. An Overview of Evolutionary Algorithms in Multiobjective Optimization, In De Jong, K. (editor), Evolutionary Computation, 1995, Vol. 3, No. 1, pp. 1–16: The Massachusetts Institute of Technology.

    Google Scholar 

  53. Gillet, V.J. Khatib, W. Willett, P. Fleming, P.J. and Green, D.V.S. Multiobjective approach to combinatorial library design. Abstr. Pap. - Am. Chem. Soc. (2001), 221st COMP-075.

    Google Scholar 

  54. UK Patent Application No. 0029361.3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gillet, V.J. (2003). Application of Evolutionary Algorithms to Combinatorial Library Design. In: Cartwright, H.M., Sztandera, L.M. (eds) Soft Computing Approaches in Chemistry. Studies in Fuzziness and Soft Computing, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36213-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36213-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53507-9

  • Online ISBN: 978-3-540-36213-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics