Skip to main content

Control of Mixing and Reactive Flow Processes

  • Chapter
Control of Fluid Flow

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 330))

Abstract

The interdisciplinary field of reactive flow control is one that holds a great deal of promise for the optimization of complex phenomena occurring in many practical systems, ranging from automobile and gas turbine engines to environmental thermal destruction systems. The fundamental underpinnings of combustion control, however, require a detailed level of understanding of complex reactive flow phenomena, and, in the case of closed-loop active control, require the ability to sense (monitor) and actuate (manipulate) flow processes in a spatially distributed manner in near real time. Hence the ultimate growth and success of the field of reactive flow control is intimately linked: 1) to advances in the understanding, simulation, and model reduction for complex reactive flows, 2) to the development of experimental diagnostic techniques, in particular, to the development of physically robust sensors, and 3) to the development of a framework or frameworks for generation of closed loop control algorithms suitable for unsteady, nonlinear reactive flow systems. The present paper seeks to outline the potential benefits and technical challenges that exist for mixing and combustion control in fundamental as well as practical systems and to identify promising research directions that could help meet these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Northam, G. B. and Anderson, G. Y., AIAA Paper 86-0159, January, 1986.

    Google Scholar 

  2. Schetz, J. A. and Billig, F. S., AIAA Paper 87-2161, July, 1987.

    Google Scholar 

  3. Turns, S. R., Myhr, F. H., Bandaru, R. V., and Maund, E. R., Combustion and Flame, Vol. 93, 1993, pp. 255–269.

    Article  Google Scholar 

  4. Gore, J. P. and Zhan, N. J., Combustion and Flame, Vol. 105, 1996, pp. 414–427.

    Article  Google Scholar 

  5. Rogers, D.E., and Marble, F.E., Jet Propulsion, 1956, p. 456.

    Google Scholar 

  6. Zukoski, E. E., “Afterburners”, Chap. 2 of Aerothermodynamics of Aircraft Engine Components, G. C. Oates, Ed., AIAA Educ. Series, 1985.

    Google Scholar 

  7. Yang, V., and Culick, F.E., Combustion Science and Technology, Vol. 45, p. 1, 1986.

    Article  Google Scholar 

  8. Sterling, J. D. and Zukoski, E. E., Combustion Science and Technology, Vol. 77, No. 4–6, pp. 225–238, 1991.

    Article  Google Scholar 

  9. Poinsot, T., Veynante, D., Bourienne, F., and Candel, S., Journal of Propulsion and Power, Vol. 5, 1989, pp. 14–20.

    Article  Google Scholar 

  10. Schadow, K. C., Gutmark, E., and Wilson, K. J., Combustion Science and Technology, Vol. 81, 1992, pp. 285–300.

    Article  Google Scholar 

  11. Beer, J. M. and Chigier, N., Combustion Aerodynamics, Krieger Publishers, 1983.

    Google Scholar 

  12. Holdeman, J. D., Progress in Energy and Combustion Science, Vol. 19, No. 1, pp. 31–70, 1993.

    Article  Google Scholar 

  13. Kamotani, Y. and Greber, I., AIAA Journal, Vol. 10, 1972, pp. 1425–1429.

    Article  Google Scholar 

  14. Hollo, S. D., McDaniel, J. C., and Hartfield, R. J. Jr., AIAA Journal, Vol. 32, 1994, pp. 528–534.

    Article  Google Scholar 

  15. Wang, K. C., Smith, O. I., and Karagozian, A. R., AIAA Journal, Vol. 33, No. 12, 1995, pp. 2259–2263.

    Article  Google Scholar 

  16. Karagozian, A. R., Wang, K. C., Le, A.-T., and Smith, O. I., J. Propul. Power, Vol. 12, No. 6, pp. 1129–1136, 1996.

    Article  Google Scholar 

  17. Marble, F. E., Hendricks, G. J., and Zukoski, E. E., AIAA Paper No. 87-1880, 1987.

    Google Scholar 

  18. Ton, V., Karagozian, A. R., Marble, F. E., Osher, S. J., and Engquist, B. E., Theoretical and Computational Fluid Dynamics, Vol. 6, 1994, pp. 161–179.

    Article  MATH  Google Scholar 

  19. Roshko, A., “The Mixing Transition in Free Shear Flows”, in The Global Geometry of Turbulence, J. Jimenez, ed., Plenum Press, NY, 1991.

    Google Scholar 

  20. Broadwell, J. E. and Breidenthal, R. E., Journal of Fluid Mechanics, Vol. 148, 1984, pp. 405–412.

    Article  Google Scholar 

  21. Tillman, T. G., Paterson, R. W., and Presz, W. M., AIAA Paper No. 87-0610, 1987.

    Google Scholar 

  22. W. M. Presz, B. L. Morin, and R. G. Gousy, Journal of Propulsion and Power, Vol. 4, No. 4, 1988, pp. 350–355.

    Article  Google Scholar 

  23. W. A. Eckerle, H. Sheibani, and J. Awad, Journal of Engineering for Gas Turbines and Power, Vol. 114, No. 1, 1992, pp. 63–71.

    Article  Google Scholar 

  24. S. A. Skebe, R. W. Paterson, and T. J. Barber, AIAA Paper No. 88-3785-CP, 1988.

    Google Scholar 

  25. McVey, J. B., Combustion Science and Technology, Vol. 60, 1988, pp. 447–451.

    Article  Google Scholar 

  26. McVey, J. B. and Kennedy, J. B., AIAA Paper No. 89-0619, 1989.

    Google Scholar 

  27. Waitz, I. A. and Underwood, D. S., Journal of Propulsion and Power, Vol. 12, No. 4, 1995, pp. 638–645.

    Google Scholar 

  28. Smith, L. L., A. J. Majamaki, I. T. Lam, O. Delabroy, A. R. Karagozian, F. E. Marble, and O. I. Smith, Physics of Fluids, Vol. 9, No. 3, 1997, pp. 667–678.

    Article  Google Scholar 

  29. Majamaki, A. J., Smith, O. I., and Karagozian, A. R., AIAA Journal, Vol. 41, No. 4, 2003, pp. 623–632.

    Article  Google Scholar 

  30. Mitchell, M. G., Smith, L. L., Karagozian, A. R., and Smith, O. I., Twenty-seventh Symposium (Intl.) on Combustion, The Combustion Institute, Pittsburgh, PA, 1998, pp. 1825–1831.

    Google Scholar 

  31. Mitchell, M. G., Smith, O. I., Karagozian, A. R., AIAA Journal, Vol. 42, No. 1, 2004, pp. 61–69.

    Article  Google Scholar 

  32. Strickland, J. H., Selerland, T., and Karagozian, A. R., Physics of Fluids, Vol. 10, No. 11, 1998, pp. 2950–2964.

    Article  Google Scholar 

  33. Selerland, T. and Karagozian, A. R., “Numerical Simulation of Reactive Flows Associated with a Lobed Fuel Injector”, Paper 97F-108, Western States Section/The Combustion Institute Fall Meeting, 1997.

    Google Scholar 

  34. Gerk, T. J. and Karagozian, A. R., Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, 1996, pp. 1095–1102.

    Google Scholar 

  35. Selerland, T. and Karagozian, A. R., Combustion Science and Technology, Vol. 131, No. 1–6, 1998, pp. 251–276.

    Article  Google Scholar 

  36. Bish, E. S. and Dahm, W. J. A., Combustion and Flame, Vol. 100, 1994, pp. 457–466.

    Article  Google Scholar 

  37. Dimotakis, P. and Miller, Physics of Fluids A, Vol. 2, No. 11, 1990, pp. 1919–1920.

    Article  MATH  Google Scholar 

  38. Peters, N., Combustion Science and Technology, Vol. 30, 1983, pp. 1–17.

    Article  Google Scholar 

  39. Bowman, C. T., Twenty-fourth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, 1992, pp. 859–878.

    Google Scholar 

  40. Lefebvre, A. H., Gas Turbine Combustion, Hemisphere Publishing Corp., New York, NY, 1983.

    Google Scholar 

  41. Westbrook, C. K. and Dryer, F. L, Progress in Energy and Combustion Science, Vol. 10, 1984, pp. 1–57.

    Article  Google Scholar 

  42. Putnam, A. A., Combustion-Driven Oscillations in Industry, American Elsevier, New York (1971).

    Google Scholar 

  43. Vermeulen, P. J., Odgers, J., and Ramesh, V., J. Eng. Power, Vol. 104, 1982, pp. 844–852.

    Article  Google Scholar 

  44. Vermeulen, P. J., Ramesh, V., and Yu, W. K., J. Eng. for Gas Turb. Power, Paper 86-GT-86, 1986.

    Google Scholar 

  45. Vermeulen, P. J., Ramesh, V., Sanders, B., and Odgers, J., Journal of Propulsion and Power Vol. 11, 1995, pp. 261–267.

    Article  Google Scholar 

  46. Vermeulen, P. J. and Ramesh, V., J. Eng. for Gas Turb. Power, Vol. 119, No. 3, 1997, pp. 559–565.

    Article  Google Scholar 

  47. McManus, K. R., Poinsot, T., and Candel, S. M., Progress in Energy and Combustion Science Vol. 19, 1993, pp. 1–12.

    Article  Google Scholar 

  48. McManus, K. R., Vandsburger, U., and Bowman, C. T., Combustion and Flame, Vol. 82, 1990, pp. 75–92.

    Article  Google Scholar 

  49. Najm, H. M. and Ghoniem, A. F., Journal of Propulsion and Power, Vol. 10, 1994, pp. 254–262.

    Article  Google Scholar 

  50. Peraccio, A. and Proscia, W., “Nonlinear Heat Release/Acoustic Model for Thermoacoustic Instability”, presented at the Workshop on Dynamics and Control of Combustion Instabilities in Propulsion and Power Systems, Caltech, Nov. 20–22, 1997.

    Google Scholar 

  51. Annaswamy, A. M. and Ghoniem, A. F., IEEE Control Systems Magazine, Vol. 15, 1995, pp. 49–63.

    Article  Google Scholar 

  52. Knoop, P., Culick, F.E.C., and Zukoski, E.E., Combustion Science and Technology, Vol. 123, No. 1–6, 1997, pp. 363–376.

    Article  Google Scholar 

  53. Padmanabhan, K. T., Bowman, C. T., and Powell, J. D., IEEE Trans. Cont. Sys. Tech., Vol. 4, pp. 217–229, 1996.

    Article  Google Scholar 

  54. Dowling, A. P., Journal of Fluid Mechanics, Vol. 346, 1997, pp. 271–290.

    Article  MATH  MathSciNet  Google Scholar 

  55. Jacobson, C, “System Identification for Models of Lean Premix Combustion Instabilities”, presented at the Workshop on Dynamics and Control of Combustion Instabilities in Propulsion and Power Systems, Caltech, Nov. 20–22, 1997.

    Google Scholar 

  56. Murray, R.M., Jacobson, C.A., Casas, R., Khibnik, A.I., Johnson Jr., C.R., Bitmead, R., Peracchio, A.A. and Proscia, W.M., “System Identification for Limit Cycling Systems: A Case Study for Combustion Instabilities”, 1998 American Control Conference.

    Google Scholar 

  57. Dines, P. J., “Active Control of Flame Noise”, Ph.D. Thesis, Cambridge University, 1984.

    Google Scholar 

  58. Heckl, M. A., “Heat Sources in Acoustic Resonators”, Ph.D. Thesis, Cambridge University, 1985.

    Google Scholar 

  59. Gulati, A. and Mani, R., Journal of Propulsion and Power, Vol. 8, 1992, pp. 1109–1115.

    Article  Google Scholar 

  60. Gleis, S., Vortmeyer, D. and Rau, W., AGARD Propulsion and Energetics Panel, 75th Symposium, 1990, pp. 1–6.

    Google Scholar 

  61. Wilson, K. J., Gutmark, E., Schadow, K. C., and Smith, R. A., Journal of Propulsion and Power, Vol. 11, No. 2, 1995, pp. 268–274.

    Article  Google Scholar 

  62. Gutmark, E., Paschereit, C. O., Weinstein, W., and Paikert, B., “Combustion Control in Swirl-Stabilized Gas Turbine Combustors”, presented at the Workshop on Dynamics and Control of Combustion Instabilities in Propulsion and Power Systems, Caltech, Nov. 20–22, 1997.

    Google Scholar 

  63. Zinn, B. T., Twenty-fourth Symposium (Intl.) on Combustion, The Combustion Institute, Pittsburgh, PA, 1992, pp. 1297–1305.

    Google Scholar 

  64. Keller, J. O., Barr, P. K., and Gemmen, R. S., Combustion and Flame, Vol. 99, 1994, pp. 29–42.

    Article  Google Scholar 

  65. Keller, J. O. and Hongo, I., Combustion and Flame, Vol. 80, 1994, pp. 219.

    Article  Google Scholar 

  66. Logan, P., Lee, J. W., Lee, L. M., Karagozian, A. R. and Smith, O. I., Combustion and Flame, Vol. 84, 1991, pp. 93–109.

    Article  Google Scholar 

  67. Smith, O. I., Marchant, R., Willis, J., Lee, L. M., Logan, P. and Karagozian, A. R., Combustion Science and Technology, Vol. 74, 1990, pp. 199–210.

    Article  Google Scholar 

  68. Cadou, C., Logan, P., Karagozian, A., Marchant, R., and Smith, O., Environ. Sensing and Comb. Diagnostics, SPIE Proc. Series Vol. 1434, 1991, pp. 67–77.

    Google Scholar 

  69. Marchant, R., Hepler, W., Smith, O. I., Willis, J., Cadou, C., Logan, P. and Karagozian, A. R., Combustion Science and Technology, Vol. 82, 1992, pp. 1–12.

    Article  Google Scholar 

  70. Willis, J. W., Lee, L.-M., Karagozian, A. R. and Smith, O. I., Combustion Science and Technology, Vol. 94, 1993, pp. 469–481.

    Article  Google Scholar 

  71. Willis, J. W., Cadou, C., Mitchell, M., Karagozian, A. R., and Smith, O. I., Combustion and Flame Vol. 99, 1994, pp. 280–287.

    Article  Google Scholar 

  72. Pont, G., Willis, J. W., Karagozian, A. R., and Smith, O. I., Twenty-sixth Symposium (Intl.) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 2463–2470, 1996.

    Google Scholar 

  73. Pont, G., Cadou, C. P., Karagozian, A. R., and Smith, O. I., Combustion and Flame, Vol. 113, 1998, pp. 249–257.

    Article  Google Scholar 

  74. Cadou, C., Smith, O. I., and Karagozian, A. R., AIAA Journal, Vol. 36, No. 9, 1998, pp. 1568–1574.

    Article  Google Scholar 

  75. Kang, Y., Karagozian, A. R., and Smith, O. I., AIAA Journal, Vol. 36, No. 9, 1998, pp. 1562–1567.

    Article  Google Scholar 

  76. Zukoski, E. E. and Marble, F. E., Proc. Gas Dynamics Symp. on Aerothermochemistry, Northwestern University Press, pp. 205–210, (1956).

    Google Scholar 

  77. Oppelt, T., Journal of the Air Pollution Control Association, Vol. 37, 1987, p. 558.

    Google Scholar 

  78. Ho, C. M. and Tai Y.C., Annual Reviews of Fluid Mechanics, Vol. 30, 1998, pp. 579–612.

    Article  Google Scholar 

  79. Bowman, C. T., presentation to NAS ASEB Panel on Breakthrough Technologies, January 19, 1998.

    Google Scholar 

  80. K. Bult, et al., “Low Power Systems for Wireless Microsensors”, Proceedings of 1996 International Symposium on Low Power Electronics and Design, Monterey, CA, Aug. 12–14, 1996.

    Google Scholar 

  81. Hanson, R., presentation to NAS ASEB Panel on Breakthrough Technologies, January 19, 1998.

    Google Scholar 

  82. Sanders, S.T., Wang, J., Jeffries, J.B., and Hanson, R.K., Applied Optics, Vol. 40, No. 24, 2001, pp. 4404–4415.

    Article  Google Scholar 

  83. Paschereit, Gutmark, E., and Weisenstein, W., Combustion Science and Technology, Vol. 138, No. 1–6, 1998, pp. 213–232.

    Article  Google Scholar 

  84. Cortelezzi, L., Leonard, A., and Doyle, J. C., J. Fluid Mech., Vol. 260, pp. 127–154, 1994.

    Article  Google Scholar 

  85. Cortelezzi, L., J. Fluid Mech., Vol. 327, pp. 303–324, 1996.

    Article  MATH  Google Scholar 

  86. Cortelezzi, L. and Speyer, J.L., “Robust Reduced-Order Controller of Laminar Boundary Layer Transitions”, Physical Review E, Vol. 58, No. 2, 1998, pp. 1906–1910.

    Article  Google Scholar 

  87. Cortelezzi, L., Lee, K.-H., Kim, J. and Speyer, J.L., “Skin-Friction Drag Reduction via Robust Reduced-Order Linear Feedback Control”, International Journal of Fluid Dynamics, Vol. 11, No. 1–2, 1998, pp. 79–92.

    Article  MATH  Google Scholar 

  88. Aubrey, N., Holmes, P., Lumley, J. L., Stone, E., J. Fluid Mech., Vol. 192, pp. 115–173, 1988.

    Article  MathSciNet  Google Scholar 

  89. Aubrey, N., Lumley, J. L., Holmes, P., Theoret. Comput. Fluid Dynamics, Vol. 1, pp. 229–248, 1990.

    Article  Google Scholar 

  90. Smith, R. S. and Doyle, J. C., IEEE Trans. Auto. Control, Vol. 37, No. 7, pp. 942–952, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  91. Cortelezzi, L., Chen, Y.-C., and Chang, H.-L., Phys. Fluids, Vol. 9, No. 7, pp. 2009–2022, 1997.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Karagozian, A.R. (2006). Control of Mixing and Reactive Flow Processes. In: Koumoutsakos, P., Mezic, I. (eds) Control of Fluid Flow. Lecture Notes in Control and Information Sciences, vol 330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36085-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36085-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25140-8

  • Online ISBN: 978-3-540-36085-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics