Equations of Motion of Complex Multibody Systems

  • Dieter SchrammEmail author
  • Manfred Hiller
  • Roberto Bardini


In this chapter several methods from classical mechanics to state equations of motion of mechanical systems are briefly explored (Sects. 4.14.4). Principally, all these methods are also suited for the modeling of the vehicles regarded in this book, which can be considered as complex multibody systems. Concerning the practical application of a method, this decision is mainly dependent on the associated modeling and calculation effort, according to the complexity of the system. Consequently, the equations of motion for this kind of large scale systems with many bodies and many kinematic loops (and therefore many constraints) will be developed numerically or symbolically with the help of the computer. The computational cost is dependent on the number of describing coordinates, including its geometrical significance; further being defined by the formulation of the constraint equations, i.e. through the modeling of the kinematics of the system, which is reflected directly by the number of required mathematical operations


Rigid Body Constraint Equation Reaction Force Multibody System LAGRANGE Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Hiller M (1983) Mechanische Systeme: Eine Einführung in die analytische Mechanik und Systemdynamik. Springer, Berlin u.a. - ISBN 978-3-540-12521-1Google Scholar
  2. Hiller M (1995) Multiloop Kinematic Chains, and Dynamics of Multiloop Systems in Kinematics and Dynamics of Multi-body SystemsGoogle Scholar
  3. Hiller M, Kecskeméthy A and Woernle C (1986–1988) Computergestützte Kinematik und Dynamik für Fahrzeuge, Roboter und Mechanismen. In Carl-Cranz-Kurs, Vol. 1.16, Carl-Cranz-Gesellschaft, OberpfaffenhofenGoogle Scholar
  4. Hiller M, Kecskeméthy A and Woernle C (1986) A loop-based kinematical analysis of complex mechanisms. In Presented at the Design Engineering Technical Conference, Columbus, OhioGoogle Scholar
  5. Kecskemethy A (1993) Objektorientierte Modellierung der Dynamik von Mehrkörpersystemen mit Hilfe von Übertragungselementen [Dr.-Ing.]. Dissertation, Universität Duisburg, Düsseldorf: VDI-VerlagGoogle Scholar
  6. Schiehlen W and Eberhard P (2004) Technische Dynamik- Modelle für Regelung und Simulation; mit 4 Tabellen und 44 Beispielen. 2., neubearb. und erg. Aufl. (ed.), Teubner, Stuttgart u.a. - ISBN 978-3-519-12365-1Google Scholar
  7. Woernle C (1988) Ein systematisches Verfahren zur Aufstellung der geometrischen Schließbedingungen in kinematischen Schleifen mit Anwendung bei der Rückwärtstransformation für Industrieroboter [Dr.-Ing.]. Dissertation, Universität Stuttgart, Düsseldorf: VDI-VerlagGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Dieter Schramm
    • 1
    Email author
  • Manfred Hiller
    • 1
  • Roberto Bardini
    • 2
  1. 1.Universität Duisburg-EssenDuisburgGermany
  2. 2.MunichGermany

Personalised recommendations