Advertisement

Fundamentals of Mathematics and Kinematics

  • Dieter SchrammEmail author
  • Manfred Hiller
  • Roberto Bardini
Chapter
  • 5.8k Downloads

Abstract

The terms vector and tensor play a central role in mechanics. Below, the difference between a vector as a physical entity and its mathematical representation by means of vector decomposition will be illustrated. The decomposition of vectors into their components requires algorithms and coordinate systems.

Keywords

Rigid Body Rotational Motion Order Tensor Inertial System Rotational Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Hiller M (1981) Analytisch-numerische Verfahren zur Behandlung räumlicher Übertragungsmechanismen [habil.]. Habilitation, Universität Stuttgart, Düsseldorf: VDI-VerlagGoogle Scholar
  2. Hiller M (1983) Mechanische Systeme: Eine Einführung in die analytische Mechanik und Systemdynamik. Springer, Berlin u.a. - ISBN 978-3-540-12521-1Google Scholar
  3. Hiller M and Kecskeméthy A (1987) A computer-oriented approach for the automatic generation and solution of the equations of motion for complex mechanisms. In Proceedings of the 7th. World Congress on Theory of Machines and Mechanisms, Vol. 1, S 425-30, IFToMM, Pergamon Press., Sevilla, SpainGoogle Scholar
  4. Hiller M, Kecskeméthy A and Woernle C (1986–1988) Computergestützte Kinematik und Dynamik für Fahrzeuge, Roboter und Mechanismen. In Carl-Cranz-Kurs, Vol. 1.16, Carl-Cranz-Gesellschaft, OberpfaffenhofenGoogle Scholar
  5. Klingbeil E (1966) Tensorrechnung für Ingenieure. Bibliographisches Institut, MannheimGoogle Scholar
  6. Magnus K and Müller-Slany HH (2005) Grundlagen der technischen Mechanik. 7., durchges. und erg. Aufl. (ed.), Teubner, Wiesbaden. - ISBN 978-3-8351-0007-7Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Dieter Schramm
    • 1
    Email author
  • Manfred Hiller
    • 1
  • Roberto Bardini
    • 2
  1. 1.Universität Duisburg-EssenDuisburgGermany
  2. 2.MunichGermany

Personalised recommendations