Skip to main content

The Shape of Inorganic Particles

  • Chapter
Biological Calcification
  • 737 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdalla O (1979) Ossification and mineralization in the tendons of the chicken (Gallus domesticus). J Anat 129:351–359

    PubMed  CAS  Google Scholar 

  • Ahmed A (1975) Calcification in human breast carcinomas: ultrastructural observations. J Path 117:247–251

    PubMed  CAS  Google Scholar 

  • Aho AJ, Isomäki AM (1962) Electron microscopic observations on experimental callus formation in rats. Acta Path Microbiol Scand 103–105

    Google Scholar 

  • Akisaka T, Nakayama M, Yoshida H, Inoue M (1998) Ultrastructural modifications of the extracellular matrix upon calcification of growth plate cartilage as revealed by quick-freeze deep etching technique. Calcif Tissue Int 63:47–56

    PubMed  CAS  Google Scholar 

  • Ali SY (1985) Apatite-type crystal deposition in arthritic cartilage. Scanning Electron Microsc 4:1555–1566

    Google Scholar 

  • Amprino R, Engström A (1952) Studies on X ray absorption and diffraction of bone tissue. Acta Anat 15:1–22

    PubMed  CAS  Google Scholar 

  • Aoba T (1996a) Recent observation on enamel crystal formation during mammalian amelogenesis. Anat Rec 245:208–218

    PubMed  CAS  Google Scholar 

  • Aoba T (1996b) Recent observations on enamel crystal formation during mammalian amelogenesis. Anat Rec 245:208–218

    PubMed  CAS  Google Scholar 

  • Arnold S, Plate U, Wiesmann H-P, Kohl H, Höling H-J (1997) Quantitative electron-spectroscopic diffraction (ESD) and electron-spectroscopic imaging (ESI) analyses of dentine mineralisation in rat incisors. Cell Tissue Res 288:185–190

    PubMed  CAS  Google Scholar 

  • Arnold S, Plate U, Wiesmann H-P, Stratmann U, Kohl H, Höhling H-J (1999) Quantitative electron spectroscopic diffraction analyses of the crystal formation in dentine. J Microsc 195:58–63

    PubMed  CAS  Google Scholar 

  • Arnott HJ, Pautard FGE (1968) The inorganic phase of bone: a re-appraisal (abstr.). Calcif Tissue Res 2:2

    Google Scholar 

  • Arsenault AL (1988) Crystal-collagen relationships in calcified turkey leg tendons visualized by selected-area dark field electron microscopy. Calcif Tissue Int 43:202–212

    PubMed  CAS  Google Scholar 

  • Arsenault AL (1992) Structural and chemical analyses of mineralization using the turkey leg tendon as a model tissue. Bone Mineral 17:253–256

    CAS  Google Scholar 

  • Arsenault AL, Grynpas MD (1988) Crystals in calcified epiphyseal cartilage and cortical bone of the rat. Calcif Tissue Int 43:219–225

    PubMed  CAS  Google Scholar 

  • Arsenault AL, Hunziker EB (1988) Electron microscopic analysis of mineral deposits in the calcifying epiphyseal growth plate. Calcif Tissue Int 42:119–126

    PubMed  CAS  Google Scholar 

  • Arsenault AL, Robinson BW (1989) The dentino-enamel junction: a structural and microanalytical study of early mineralization. Calcif Tissue Int 45:111–121

    PubMed  CAS  Google Scholar 

  • Arzate H, Alvarez-Perez MA, Alvarez-Fregoso O, Wusterhaus-Chavez A, Reyes-Gasga J, Ximenez-Fyvie LA (2000) Electron microscopy, micro-analysis, and X-ray diffraction characterization of the mineral-like tissue deposited by human cementum tumor-derived cells. J Dent Res 79:28–34

    PubMed  CAS  Google Scholar 

  • Ascenzi A (1948a) Contributo allo studio delle proprietà ottiche dell’osso umano normale. II. Sulla birifrangenza totale. R C Accad Naz Lincei (Classe Sci Fis Mat Nat) 5:100–107

    Google Scholar 

  • Ascenzi A (1948b) Contributo allo studio delle proprietà ottiche dell’osso umano normale. III. Sulla birifrangenza di forma e la birifrangenza propria. R C AccadNaz Lincei (Classe Sci Fis Mat Nat) 5:171–180

    Google Scholar 

  • Ascenzi A (1949) Quantitative researches on the optical properties of human bone. Nature (London) 163:604

    Google Scholar 

  • Ascenzi A, Benedetti EL (1959) An electron microscopic study of the foetal membranous ossification. Acta Anat 37:370–385

    PubMed  CAS  Google Scholar 

  • Ascenzi A, Bonucci E (1964) A quantitative investigation of the birefringence of the osteon. Acta Anat 44:236–262

    Google Scholar 

  • Ascenzi A, François C, Steve Bocciarelli D (1963) On the bone induced by estrogen in birds. J Ultrastruct Res 8:491–505

    PubMed  CAS  Google Scholar 

  • Ascenzi A, Bonucci E, Steve Bocciarelli D (1965) An electron microscope study of osteon calcification. J Ultrastruct Res 12:287–303

    PubMed  CAS  Google Scholar 

  • Ascenzi A, Bonucci E, Steve Bocciarelli D (1967) An electron microscope study on primary periosteal bone. J Ultrastruct Res 18:605–618

    PubMed  CAS  Google Scholar 

  • Ascenzi A, Bonucci E, Steve Bocciarelli D (1968) Fine structure of the bone mineral in different experimental conditions. In: Steve Bocciarelli D (ed) Fourth Regional Conference on Electron Microscopy, vol 2. Tipografia Poliglotta Vaticana. Rome, pp 431–432

    Google Scholar 

  • Ascenzi A, Bonucci E, Ripamonti A, Roveri N (1978) X-ray diffraction and electron microscope study of osteons during calcification. Calcif Tissue Res 25:133–143

    PubMed  CAS  Google Scholar 

  • Barckhaus RH, Höhling HJ (1978) Electron microscopical microprobe analysis of freeze dried and unstained mineralized epiphyseal cartilage. Cell Tissue Res 186:541–549

    PubMed  CAS  Google Scholar 

  • Baron R (1995) Molecular mechanisms of bone resorption. An update. Acta Orthop Scand 66:66–70

    Google Scholar 

  • Batina N, Renugopalakrishnan V, Casillas Lavín PN, Guerrero JCH, Morales M, Garduño-Juárez R, Lakka SL (2004) Ultrastructure of dental enamel afflicted with hypoplasia: an atomic force microscopic study. Calcif Tissue Int 74:294–301

    PubMed  CAS  Google Scholar 

  • Bazylinski DA, Garratt-Reed AJ, Frankel RB (1994) Electron microscopic studies of magnetosomes in magnetotactic bacteria. Microsc Res Tech 27:389–401

    PubMed  CAS  Google Scholar 

  • Bekker PJ, Gay CV (1990) Biochemical characterization of an electrogenic vacuolar proton pump in purified chicken osteoclast plasma membrane vesicles. J Bone Miner Res 5:569–579

    PubMed  CAS  Google Scholar 

  • Benson SC, Wilt FH (1992) Calcification of spicules in the sea urchin embryo. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 157–178

    Google Scholar 

  • Berry JP (1970) Néphrocalcinose éxperimentale par injection de parathormone. Etude au microanalyseur à sonde électronique. Nephron 7:97–116

    PubMed  CAS  Google Scholar 

  • Bestetti-Bosisio M, Cotelli F, Schiaffino E, Sorgato G, Schmid C (1984) Lung calcification in long-term dialysed patients: a light and electronmicroscopic study. Histopathology 8:69–79

    PubMed  CAS  Google Scholar 

  • Bevelander G, Nakahara H (1969a) An electron microscope study of the formation of the nacreous layer in the shell of certain bivalve molluscs. Calcif Tissue Res 3:84–92

    PubMed  CAS  Google Scholar 

  • Bevelander G, Nakahara H (1969b) An electron microscope study of the formation of the ligament of Mytilus edulis and Pinctada radiata. Calcif Tissue Res 4:101–112

    PubMed  CAS  Google Scholar 

  • Bigi A, Ripamonti A, Koch MHJ, Roveri N (1988) Calcified turkey leg tendon as structural model for bone mineralization. Int J Biol Macromol 10:282–286

    CAS  Google Scholar 

  • Blair HC, Ghandur-Mnaymneh L (1985) Macrophage-mediated bone resorption occurs in an acidic environment. Calcif Tissue Int 37:547–550

    PubMed  CAS  Google Scholar 

  • Blair HC, Teitelbaum SL, Ghiselli R, Gluck S (1989) Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245:855–857

    PubMed  CAS  Google Scholar 

  • Bloom W, Bloom MA, McLean FC (1942) Calcification and ossification. Medullary bone changes in the reproductive cycle of female pigeons. Anat Rec 83:443–466

    Google Scholar 

  • Bocciarelli DS (1970) Morphology of crystallites in bone. Calcif Tissue Res 5:261–269

    PubMed  CAS  Google Scholar 

  • Boivin G (1975) Étude chez le rat d’une calcinose cutanée induite par calciphylaxie locale I. — Aspects ultrastructuraux. Arch Anat Microsc Morphol Expér 64:183–205

    CAS  Google Scholar 

  • Boivin G, Lagier R (1983) An ultrastructural study of articular chondrocalcinosis in cases of knee osteoarthritis. Virchows Arch [Pathol Anat] 400:13–29

    CAS  Google Scholar 

  • Boivin G, Tochon-Danguy HJ (1976) Étude chez le rat d’une calcinose cutanée induite per calciphylaxie locale II. Aspects biophysiques de la substance minérale. Ann Biol Anim Bioch Biophys 16:869–878

    CAS  Google Scholar 

  • Bonucci E (1967) Fine structure of early cartilage calcification. J Ultrastruct Res 20:33–50

    PubMed  CAS  Google Scholar 

  • Bonucci E (1969) Further investigation on the organic/inorganic relationships in calcifying cartilage. Calcif Tissue Res 3:38–54

    PubMed  CAS  Google Scholar 

  • Bonucci E (1971) The locus of initial calcification in cartilage and bone. Clin Orthop Relat Res 78:108–139

    PubMed  CAS  Google Scholar 

  • Bonucci E (1974) The organic-inorganic relationships in bone matrix undergoing osteoclastic resorption. Calcif Tissue Res 16:13–36

    PubMed  CAS  Google Scholar 

  • Bonucci E (1975) The organic-inorganic relationships in calcified organic matrices. Physicochimie et cristallographie des apatites d’intérêt biologique. Centre National de la Recherche Scientifique, Paris, pp 231–246

    Google Scholar 

  • Bonucci E (1981) New knowledge on the origin, function and fate of osteoclasts. Clin Orthop Relat Res 158:252–269

    PubMed  Google Scholar 

  • Bonucci E (2002) Crystal ghosts and biological mineralization: fancy spectres in an old castle, or neglected structures worthy of belief? J Bone Miner Metab 20:249–265

    PubMed  Google Scholar 

  • Bonucci E, Sadun R (1972) An electron microscope study on experimental calcification of skeletal muscle. Clin Orthop Relat Res 88:197–217

    PubMed  CAS  Google Scholar 

  • Bonucci E, Sadun R (1973) Experimental calcification of the myocardium. Ultrastructural and histochemical investigations. Am J Pathol 71:167–192

    PubMed  CAS  Google Scholar 

  • Bonucci E, Sadun R (1975) Dihydrotachysterol-induced aortic calcification. A histochemical and ultrastructural investigation. Clin Orthop Relat Res 107:283–294

    PubMed  Google Scholar 

  • Bonucci E, Silvestrini G (1994) Morphological investigation of epiphyseal cartilage after glutaraldehyde-malachite green fixation. Bone 15:153–160

    PubMed  CAS  Google Scholar 

  • Bonucci E, Derenzini M, Marinozzi V (1973) The organic-inorganic relationship in calcified mitochondria. J Cell Biol 59:185–211

    PubMed  CAS  Google Scholar 

  • Bonucci E, Silvestrini G, Ballanti P, Della Rocca C, Mocetti P (1994) Dihydrotachysterolinduced lung calcification in the rat. It J Miner Electrol Metab 8:12–22

    Google Scholar 

  • Boothroyd B (1964) The problem of demineralisation in thin sections of fully calcified bone. J Cell Biol 20:165–173

    PubMed  CAS  Google Scholar 

  • Boothroyd B (1975a) Observations on embryonic chick-bone crystals by high resolution transmission electron microscopy. Clin Orthop Relat Res 106:290–310

    PubMed  Google Scholar 

  • Boothroyd B (1975b) Observations on embryonic chick-bone crystals by high resolution transmission electron microscopy. Clin Orthop Relat Res 106:290–310

    PubMed  Google Scholar 

  • Boskey AL, Vigorita VJ, Sencer O, Stuchin SA, Lane JM (1983) Chemical, microscopic, and ultrastructural characterization of the mineral deposits in tumoral calcinosis. Clin Orthop Relat Res 178:258–269

    PubMed  CAS  Google Scholar 

  • Boyan BD, Swain LD, Everett MM, Schwartz Z (1992) Mechanisms of microbial mineralization. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 129–156

    Google Scholar 

  • Boyde A (1974) Transmission electron microscopy of ion beam thinned dentine. Cell Tissue Res 152:543–550

    PubMed  CAS  Google Scholar 

  • Brandenburger E, Schinz HR (1945) über die Natur der Verkarkungen bei Mensch und Tier und das Verhalten der anorganischen Knochensubstanz im Falle der hauptsächlichen menschlichen Knochenkrankheiten. Helv Med Acta 12:1–63

    Google Scholar 

  • Brandt G, Bässler R (1972) Die Wirkung der experimentellen Hypercalcämie durch Dihydrotachysterin auf Drüsenfunktion und Verkalkungsmuster der Mamma. Licht-, elektronenmikroskopische und chemisch-analytische Untersuchungen. Virchows Arch Abt A Path Anat 356:155–172

    CAS  Google Scholar 

  • Buseck PR, Dunin-Borkowski RE, Devouard B, Frankel RB, McCartney MR, Midgley PA, Pósfai M, Weyland M (2001) Magnetic morphology and life on Mars. Proc Natl Acad Sci USA 98:13490–13495

    PubMed  CAS  Google Scholar 

  • Butler WT (1998) Dentin matrix protein. Eur J Oral Sci 106(suppl 1):204–210

    PubMed  CAS  Google Scholar 

  • Cabrini RL, Klein-Szanto AJP (1973) The presence of perichondrocytic rods in the tibial epiphyseal plate of the rat. J Microsc (Paris) 17:219–222

    Google Scholar 

  • Cameron DA, Paschall HA, Robinson RA (1967) Changes in the fine structure of bone cells after the administration of parathyroid extract. J Cell Biol 33:1–14

    PubMed  CAS  Google Scholar 

  • Carafoli E, Tiozzo R (1968) Astudy of energy-linked calcium transport in liver mitochondria during CCl4 intoxication. Exp Molec Pathol 9:131–140

    CAS  Google Scholar 

  • Carafoli E, Tiozzo R, Pasquali-Ronchetti I, Laschi R (1971) A study of Ca2+ metabolism in kidney mitochondria during acute uranium intoxication. Lab Invest 25:516–527

    PubMed  CAS  Google Scholar 

  • Carlström D (1955) X-ray crystallographic studies on apatites and calcified structures. Acta Radiol Suppl 121:1–59

    Google Scholar 

  • Carlström D, Finean JB (1954) X-ray diffraction studies on the ultrastructure of bone. Biochim Biophys Acta 13:183–191

    PubMed  Google Scholar 

  • Carlström D, Glas J-E (1959) The size and shape of the apatite crystallites in bone as determined from line-broadening measurements on oriented specimens. Biochim Biophys Acta 35:46–53

    PubMed  Google Scholar 

  • Carter DH, Scully AJ, Hatton PV, Davies RM, Aaron JE (2000) Cryopreservation and image enhancement of juvenile and adult dentine mineral. Histochem J 32:253–261

    PubMed  CAS  Google Scholar 

  • Cavallero C, Spagnoli LG, Di Tondo U (1974) Early mitochondrial calcification in the rabbit aorta after adrenaline. Virchows Arch A Path Anat Histol 362:23–39

    CAS  Google Scholar 

  • Cisar JO, Xu D-Q, Thompson J, Swaim W, Hu L, Kopecko DJ (2000) An alternative interpretation of nanobacteria-induced biomineralization. Proc Natl Acad Sci USA 97:11511–11515

    PubMed  CAS  Google Scholar 

  • Clark JH (1931) A study of tendons, bones, and other forms of connective tissue by means of X-ray diffraction patterns. Am J Physiol 98:328–337

    CAS  Google Scholar 

  • Clode PL, Marshall AT (2003) Skeletal microstructure of Galaxea fascicularis exsert septa: a high-resolution SEM study. Biol Bull 204:146–154

    PubMed  Google Scholar 

  • Cuif I-P, Dauphin T (2005) The two-step mode of growth in the scleractinian coral skeletons from the micrometer to the overall scale. J Struct Biol 150:319–331

    PubMed  Google Scholar 

  • Cuisinier F, Bres EF, Hemmerle J, Voegel J-C, Frank RM (1987) Transmission electron microscopy of lattice planes in human alveolar bone apatite crystals. Calcif Tissue Int 40:332–338

    PubMed  CAS  Google Scholar 

  • Cuisinier FJG, Steuer P, Senger B, Voegel JC, Frank RM (1992) Human amelogenesis I: High resolution electron microscopy study of ribbon-like crystals. Calcif Tissue Int 51:259–268

    PubMed  CAS  Google Scholar 

  • D’Agostino AN, Chiga M (1970) Mitochondrial mineralization in human myocardium. Am J Clin Pathol 53:820–824

    PubMed  CAS  Google Scholar 

  • Daculsi G, Kerebel B (1978) High-resolution electron microscope study of human enamel crystallites: size, shape, and growth. J Ultrastruct Res 65:163–172

    PubMed  CAS  Google Scholar 

  • Daculsi G, Faure G, Kerebel B (1983) Electron microscopy and microanalysis of a subcutaneous heterotopic calcification. Calcif Tissue Int 35:723–727

    PubMed  CAS  Google Scholar 

  • Daculsi G, Menanteau J, Kerebel LM, Mitre D (1984) Length and shape of enamel crystals. Calcif Tissue Int 36:550–555

    PubMed  CAS  Google Scholar 

  • Dallemagne MJ, Melon J (1946) Nouvelles recherches relatives aux propriétés optique de l’os: la biréfringencede l’os minéralisé; relations entre les fractionsorganiques et inorganique de l’os. J Washington Acad Sci 36:181–195

    CAS  Google Scholar 

  • Daoud AS, Frank AS, Jarmolych J, Franco WT, Fritz KE (1985) Ultrastructural and elemental analysis of calcification of advanced swine aortic atherosclerosis. Exp Mol Pathol 43:337–347

    PubMed  CAS  Google Scholar 

  • Dauphin Y (2003) Soluble organic matrices of the calcitic prismatic shell layers of two pteriomorphid bivalves. J Biol Chem 278:15168–15177

    PubMed  CAS  Google Scholar 

  • Delaissé JM, Eeckhout Y, Neff L, François-Gillet C, Henriet P, Su Y, Vaes G, Baron R (1993) (Pro)collagenase (matrix metalloproteinase-1) is present in rodent osteoclasts and in the underlying bone-resorbing compartment. J Cell Sci 106:1071–1082

    PubMed  Google Scholar 

  • Dong W, Warshawsky H (1996) Lattice fringe continuity in the absence of crystal continuity in enamel. Adv Dent Res 10:232–237

    PubMed  CAS  Google Scholar 

  • Dudley HR, Spiro D (1961) The fine structure of bone cells. J Biophys Biochem Cytol 11:627–649

    Google Scholar 

  • Duffy JL, Meadow E, Suzuki Y, Churg J (1971) Acute calcium nephropathy. Early proximal tubular changes in the rat kidney. Arch Path 91:340–350

    PubMed  CAS  Google Scholar 

  • Eeckhout Y, Delaisse JM (1988) The role of collagenase in bone resorption. An overview. Path Biol 36:1139–1146

    CAS  Google Scholar 

  • Eggermann J, Kapanci Y (1971) Experimental pulmonary calcinosis in the rat. Ultrastructural and morphometric study. Lab Invest 24:469–482

    PubMed  CAS  Google Scholar 

  • Eisenstein R, Zeruolis L (1964) Vitamin-D induced aortic calcification. Arch Path 77:27–35

    PubMed  CAS  Google Scholar 

  • Elliott JC (1973) The problems of the composition and structure of the mineral components of the hard tissues. Clin Orthop Relat Res 93:313–345

    PubMed  CAS  Google Scholar 

  • Engfeldt B, Reinholt FP (1992) Structure and calcification of epiphyseal growth cartilage. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 217–241

    Google Scholar 

  • Ennever J, Creamer H (1967) Microbiological calcification: bone mineral and bacteria. Calcif Tissue Res 1:87–93

    PubMed  CAS  Google Scholar 

  • Ennever J, Streckfuss JL, Goldschmidt MC (1981) Calcifiability comparison among selected microorganisms. J Dent Res 60:1793–1796

    PubMed  CAS  Google Scholar 

  • Eppell SJ, Tong W, Katz JL, Kuhn L, Glimcher MJ (2001) Shape and size of isolated bone mineralites measured using atomic force microscopy. J Orthop Res 19:1027–1034

    PubMed  CAS  Google Scholar 

  • Fernández-Morán H, Engström A (1957) Electron microscopy and X-ray diffraction of bone. Biochim Biophys Acta 23:260–264

    PubMed  Google Scholar 

  • Finean JB, Engström A (1953) The low-angle scatter of X-rays from bone tissue. Biochim Biophys Acta 11:178–189

    PubMed  CAS  Google Scholar 

  • Fratzl P, Fratzl-Zelman N, Klaushofer K, Vogl G, Koller K (1991) Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif Tissue Int 48:407–413

    PubMed  CAS  Google Scholar 

  • Fratzl P, Groschner M, Vogl G, Plenk H Jr, Eschberger J, Fratzl-Zelman N, Koller K, Klaushofer K (1992) Mineral crystals in calcified tissues: a comparative study by SAXS. J Bone Miner Res 7:329–334

    PubMed  CAS  Google Scholar 

  • Fratzl P, Schreiber S, Klaushofer K (1996a) Bone mineralization as studied by small-angle X-ray scattering. Connect Tissue Res 34:247–254

    PubMed  CAS  Google Scholar 

  • Fratzl P, Paris O, Klaushofer K, Landis WJ (1996b) Bone mineralization in an osteogenesis imperfecta mouse model studied by small-angle X-ray scattering. J Clin Invest 97:396–402

    PubMed  CAS  Google Scholar 

  • Frazier PD (1968) Adult human enamel: an electron microscopic study of crystallite size and morphology. J Ultrastruct Res 22:1–11

    PubMed  CAS  Google Scholar 

  • Furuya S, Ohtsuki T, Yabe Y, Hosoda Y (2000) Ultrastructural study on calcification of cartilage: comparing ICR and twy mice. J Bone Miner Metab 18:140–147

    PubMed  CAS  Google Scholar 

  • Garant PR (1970) An electron microscopic study of the crystal-matrix relationship in the teeth of the dogfish Squalus acanthias L. J Ultrastruct Res 30:441–449

    PubMed  CAS  Google Scholar 

  • Ghidoni JJ, Liotta D, Thomas H (1969) Massive subendocardial damage accompanying prolonged ventricular fibrillation. Am J Pathol 56:15–29

    PubMed  CAS  Google Scholar 

  • Glimcher MJ (1959) Molecular biology of mineralized tissues with particular reference to bone. Rev Mod Phys 31:359–393

    CAS  Google Scholar 

  • Gonzales F, Karnovsky MJ (1961) Electron microscopy of osteoclasts in healing fractures of rat bone. J Biophys Biochem Cytol 9:299–316

    PubMed  CAS  Google Scholar 

  • Göthlin G, Ericsson JLE (1976) The osteoclast. Review of ultrastructure, origin, and structure-function relationship. Clin Orthop Relat Res 120:201–231

    PubMed  Google Scholar 

  • Greenawalt JW, Carafoli E (1966) Electron microscope studies on the active accumulation of Sr++ by rat-liver mitochondria. J Cell Biol 29:37–61

    PubMed  CAS  Google Scholar 

  • Greenawalt JW, Rossi CS, Lehninger AL (1964) Effect of active accumulation of calcium and phosphate ions on the structure of rat liver mitochondria. J Cell Biol 23:21–38

    PubMed  CAS  Google Scholar 

  • Grégoire C (1957) Topography of the organic components in mother-of-pearl. J Biophys Biochem Cytol 3:797–806

    PubMed  Google Scholar 

  • Gritzka TL, Trump BF (1968) Renal tubular lesions caused by mercuric chloride. Electron microscopic observations: degeneration of the pars recta. Am J Pathol 52:1225–1277

    PubMed  CAS  Google Scholar 

  • Guseo A (1975) Ultrastructure of calcification in Sturge-Weber disease. Virchows Arch A Path Anat Histol 366:353–356

    CAS  Google Scholar 

  • Hagler HK, Sherwin L, Buja LM (1979) Effect of different methods of tissue preparation on mitochondrial inclusions of ischemic and infarcted canine myocardium. Transmission and analytic electron microscopic study. Lab Invest 40:529–544

    PubMed  CAS  Google Scholar 

  • Hagler HK, Lopez LE, Murphy ME, Greico CA, Buja LM (1981) Quantitative X-ray microanalysis of mitochondrial calcification in damaged myocardium. Lab Invest 45:241–247

    PubMed  CAS  Google Scholar 

  • Hall TJ, Chambers TJ (1996) Molecular aspects of osteoclast function. Inflamm Res 45:1–9

    PubMed  CAS  Google Scholar 

  • Hancox NM, Boothroyd B (1961) Motion picture and electron microscope studies on the embryonic avian osteoclast. J Biophys Biochem Cytol 11:651–661

    PubMed  CAS  Google Scholar 

  • Hancox NM, Boothroyd B (1963) Structure-function relationships in the osteoclast. In: Sognnaes RF (ed) Mechanisms of hard tissue destruction. American Association for the Advancement of Science, Washington, pp 497–514

    Google Scholar 

  • Hancox NM, Boothroyd B (1965) Electron microscopy of the early stages of osteogenesis. Clin Orthop Relat Res 40:153–161

    PubMed  CAS  Google Scholar 

  • Hayashi Y (1984) Crystal growth in calcifying fronts during dentinogenesis. Acta Anat 118:13–17

    PubMed  CAS  Google Scholar 

  • Hayashi Y (1987) Ultrastructure of cementum formation on partially formed teeth in dogs. Acta Anat 129:279–288

    PubMed  CAS  Google Scholar 

  • Heggtveit HA, Herman L, Mishra RK (1964) Cardiac necrosis and calcification in experimental magnesium deficiency. A light and electron microscopic study. Am J Pathol 45:757–782

    PubMed  CAS  Google Scholar 

  • Henny GC, Spiegel-Adolf M (1945) X-ray diffraction studies on fish bones. Am J Physiol 144:632–636

    CAS  Google Scholar 

  • Heywood BR, Sparks NH, Shellis RP, Weiner S, Mann S (1990) Ultrastructure, morphology and crystal growth of biogenic and synthetic apatites. Connect Tissue Res 25:103–119

    PubMed  CAS  Google Scholar 

  • Hill PA, Docherty AJP, Bottomley KMK, O’Connell JP, Morphy JR, Reynolds JJ, Meikle MC (1995) Inhibition of bone resorption in vitro by selective inhibitors of gelatinase and collagenase. Biochem J 308:167–175

    PubMed  CAS  Google Scholar 

  • Höhling HJ (1989) Special aspects of biomineralization of dental tissues. In: Oksche A, Vollrath L (eds) Handbook of microscopic anatomy. Springer, Berlin Heidelberg New York, pp 475–524

    Google Scholar 

  • Höhling HJ, Schöpfer H (1968) Morphological investigations of apatitic nucleation in hard tissue and salivary stone formation. Naturwissensch 55:545

    Google Scholar 

  • Höhling HJ, Pfefferkorn G, Radicke J, Vahl J (1969) Elektronenmikroskopische Untersuchungen zur organischen Matrix und Kristalbildung in meschlichen Speichelsteinen. Deut Zahnärztl Z 24:663–67

    Google Scholar 

  • Höhling HJ, Schöpfer H, Neubauer G (1970) Elektronenmikroskopie und Laserbeugungs-Untersuchungen zur Charakterisierung der organischen Matrix im Speichelstein und Hartgewebe. Z Zellforsch 108:415–430

    PubMed  Google Scholar 

  • Höhling HJ, Kreilos R, Neubauer G, Boyde A (1971a) Electron microscopy and electron microscopical measurements of collagen mineralization in hard tissues. Z Zellforsch 122:36–52

    PubMed  Google Scholar 

  • Höhling HJ, Scholz F, Boyde A, Heine HG, Reimer L (1971b) Electron microscopical and laser diffraction studies of the nucleation and growth of crystals in the organic matrix of dentine. Z Zellforsch 117:381–393

    PubMed  Google Scholar 

  • Höhling HJ, Barckhaus RH, Krefting ER, Schreiber J (1976a) Electron microscopic microprobe analysis of mineralized collagen fibrils and extracollagenous regions in turkey leg tendon. Cell Tissue Res 175:345–350

    PubMed  Google Scholar 

  • Höhling HJ, Steffens H, Stamm G (1976b) Transmission microscopy of freeze dried, unstained epiphyseal cartilage of the guinea pig. Cell Tissue Res 167:243–263

    PubMed  Google Scholar 

  • Höhling HJ, Barckhaus RH, Krefting E-R, Althoff J, Quint P (1990) Collagen mineralization: aspects of the structural relationship between collagen and the apatitic crystallites. In: Bonucci E, Motta PM (eds) Ultrastructure of skeletal tissues. Kluwer Academic Publishers, Boston, pp 41–62

    Google Scholar 

  • Höhling HJ, Arnold S, Barckhaus RH, Plate U, Wiesmann HP (1995) Structural relationship between the primary crystal formation and the matrix macromolecules in different hard tissues. Discussion of a general principle. Connect Tissue Int 33:171–178

    Google Scholar 

  • Höhling HJ, Arnold S, Plate U, Stratmann U, Wiesmann HP (1997) Analysis of general principle of crystal nucleation, formation in the different hard tissues. Adv Dent Res 11:462–466

    PubMed  Google Scholar 

  • Holliday LS, Welgus HG, Fliszar CJ, Veith GM, Jeffrey JJ, Gluck SL (1997) Initiation of osteoclast bone resorption by interstitial collagenase. J Biol Chem 272:22053–22058

    PubMed  CAS  Google Scholar 

  • Holtrop ME (1972) The ultrastructure of the epiphyseal plate. II. The hypertrophic chondrocyte. Calcif Tissue Res 9:140–151

    PubMed  CAS  Google Scholar 

  • Holtrop ME (1991) Light and electronmicroscopic structure of osteoclasts. In: Hall BK (ed) Bone. CRC Press, Boca Raton, pp 1–29

    Google Scholar 

  • Holtrop ME, King GJ (1977) The ultrastructure of the osteoclast and its functional implications. Clin Orthop Relat Res 123:177–196

    PubMed  Google Scholar 

  • Inage T (1975) Electron microscopic study of early formation of the tooth enameloid of a fish (Hoplognathus fasciatus). I. Odontoblasts and matrix fibers. Arch Histol Jpn 38:209–227

    PubMed  CAS  Google Scholar 

  • Jackson SA, Cartwright AG, Lewis D (1978) The morphology of bone mineral crystals. Calcif Tissue Res 25:217–222

    PubMed  CAS  Google Scholar 

  • Johansen E, Parks HF (1960) Electron microscopic observations on the three dimensional morphology of apatite crystallites of human dentine and bone. J Biophys Biochem Cytol 7:743–746

    PubMed  CAS  Google Scholar 

  • Jongebloed WL, Molenaar I, Arends J (1975) Morphology and size-distribution of sound and acid-treated enamel crystallites. Calcif Tissue Res 19:109–123

    PubMed  CAS  Google Scholar 

  • Kajander EO, Çiftçioglu N (1998) Nanobacteria: an alternative mechanism for pathogenic intra-and extracellular calcification and stone formation. Proc Natl Acad Sci USA 95:8274–8279

    PubMed  CAS  Google Scholar 

  • Kallenbach E (1990) Evidence that apatite crystals of rat incisor enamel have hexagonal cross sections. Anat Rec 228:132–136

    PubMed  CAS  Google Scholar 

  • Katsunuma N (1997) Molecular mechanisms of bone collagen degradation in bone resorption. J Bone Miner Metab 15:1–8

    CAS  Google Scholar 

  • Keen CE, Crocker PR, Brady K, Hasan N, Levison DA (1991) Calcium pyrophosphate dihydrate deposition disease: morphological and microanalytical features. Histopathology 19:529–536

    PubMed  CAS  Google Scholar 

  • Kelly PG, Oliver PTP, Pautard FGE (1965) The shell of Lingula unguis. In: Richelle LJ, Dallemagne MJ (eds) Calcified tissues. Université de Liège, Liège, pp 337–345

    Google Scholar 

  • Kerebel B, Daculsi G, Kerebel LM (1979) Ultrastructural studies of enamel crystallites. Jdent Res 58:844–850

    CAS  Google Scholar 

  • Kim H-M, Rey C, Glimcher MJ (1995) Isolation of calcium-phosphate crystals of bone by non-aqueous methods at low temperature. J Bone Miner Res 10:1589–1601

    PubMed  CAS  Google Scholar 

  • Kim H-M, Rey C, Glimcher MJ (1996) X-ray diffraction, electron microscopy, and Fourier transform infrared spectroscopy of apatite crystals isolated from chicken and bovine calcified cartilage. Calcif Tissue Int 59:58–63

    PubMed  CAS  Google Scholar 

  • Kim KM (1994) Cell death and calcification of canine fibroblasts in vitro. Cells Mater 4:247–261

    Google Scholar 

  • Kim KM, Huang S (1971) Ultrastructural study of calcification of human aortic valve. Lab Invest 25:357–366

    PubMed  CAS  Google Scholar 

  • Kinney JH, Pople JA, Marshall GW, Marshall SJ (2001) Collagen orientation and crystallite size in human dentin: a small angle X-ray scattering study. Calcif Tissue Int 69:31–37

    PubMed  CAS  Google Scholar 

  • Kirkham J, Brookes SJ, Shore RC, Bonass WA, Smith DA, Wallwork ML, Robinson C (1998) Atomic force microscopy studies of crystal surface topology during enamel development. Connect Tissue Res 38:91–100

    PubMed  CAS  Google Scholar 

  • Knese K-H, Knoop A-M (1958) Elektronenoptische Untersuchungen über die periostale Osteogenese. Z Zellforsch 48:455–478

    PubMed  CAS  Google Scholar 

  • Krefting E-R, Barckhaus RH, Höhling HJ, Bond P, Hosemann R (1980) Analysis of the crystal arrangement in collagen fibrils of mineralizing turkey tibia tendon. Cell Tissue Res 205:485–492

    PubMed  CAS  Google Scholar 

  • Kutsuna F (1972) Electron microscopic studies on isoproterenol-induced myocardial lesion in rats. Jpn Heart J 13:168–175

    PubMed  CAS  Google Scholar 

  • Laitala T, Väänänen K (1993) Proton channel part of vacuolar H+-ATPase and carbonic anhydrase II expression is stimulated in resorbing osteoclasts. J Bone Miner Res 8:119–126

    PubMed  CAS  Google Scholar 

  • Landis WJ (1985) Temporal sequence of mineralization in calcifying turkey leg tendon. In: Butler WT (ed) The chemistry and biology of mineralized tissues. Ebsco Media, Inc., Birmingham, AL, pp 360–363

    Google Scholar 

  • Landis WJ, Arsenault AL (1989) Vesicle-and collagen-mediated calcification in the turkey leg tendon. Connect Tissue Res 22:35–42

    PubMed  CAS  Google Scholar 

  • Landis WJ, Géraudie J (1990) Organization and development of the mineral phase during early ontogenesis of the bony fin rays of the trout Oncorhynchus mykiss. Anat Rec 228:383–391

    PubMed  CAS  Google Scholar 

  • Landis WJ, Glimcher MJ (1978) Electron diffraction and electron probe microanalysis of the mineral phase of bone tissue prepared by anhydrous techniques. J Ultrastruct Res 63:188–223

    PubMed  CAS  Google Scholar 

  • Landis WJ, Glimcher MJ (1982) Electron optical and analytical observations of rat growth plate cartilage prepared by ultracryomicrotomy: the failure to detect a mineral phase in matrix vesicles and the identification of heterodispersed particles as the initial solid phase of calcium phosphate deposited in the extracellular matrix. J Ultrastruct Res 78:227–268

    PubMed  CAS  Google Scholar 

  • Landis WJ, Silver FH (2002) The structure and function of normally mineralizing avian tendons. Comp Biochem Physiol A Mol Integr Physiol 133:1135–1157

    PubMed  Google Scholar 

  • Landis WJ, Song MJ (1991) Early mineral deposition in calcifying tendons characterized by high voltage electron microscopy and three-dimensional graphic imaging. J Struct Biol 107:116–127

    PubMed  CAS  Google Scholar 

  • Landis WJ, Paine MC, Glimcher MJ (1977a) Electron microscopic observations of bone tissue prepared anhydrously in organic solvents. J Ultrastruct Res 59:1–30

    PubMed  CAS  Google Scholar 

  • Landis WJ, Hauschka BT, Rogerson CA, Glimcher MJ (1977b) Electron microscopic observations of bone tissue prepared by ultracryomicrotomy. J Ultrastruct Res 59:185–206

    PubMed  CAS  Google Scholar 

  • Landis WJ, Paine MC, Glimcher MJ (1980) Use of acrolein vapors for the anhydrous preparation of bone tissue for electron microscopy. J Ultrastruct Res 70:171–180

    PubMed  CAS  Google Scholar 

  • Landis WJ, Moradian-Oldak J, Weiner S (1991) Topographic imaging of mineral and collagen in the calcifying turkey tendon. Connect Tissue Res 25:181–196

    PubMed  CAS  Google Scholar 

  • Landis WJ, Song MJ, Leith A, McEwen L, McEwen BF (1993) Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol 110:39–54

    PubMed  CAS  Google Scholar 

  • Lee DD, LeGeros RZ (1985) Microbeam electron diffraction and lattice fringe studies of defect structures in enamel apatites. Calcif Tissue Int 37:651–658

    PubMed  CAS  Google Scholar 

  • Lees S, Prostak K (1988) The locus of mineral crystallites in bone. Connect Tissue Res 18:41–54

    PubMed  CAS  Google Scholar 

  • Lees S, Prostak KS, Ingle VK, Kjoller K (1994) The loci of mineral in turkey leg tendon as seen by atomic force microscope and electron microscopy. Calcif Tissue Int 55:180–189

    PubMed  CAS  Google Scholar 

  • Legato MJ, Spiro D, Langer GA (1968) Ultrastructural alterations produced in mammalian myocardium by variation in perfusate ionic composition. J Cell Biol 37:1–12

    PubMed  CAS  Google Scholar 

  • LeGeros RZ, Suga S (1980) Crystallographic nature of fluoride in enameloids of fish. Calcif Tissue Int 32:169–174

    PubMed  CAS  Google Scholar 

  • Lewinson D, Silbermann M (1990) Ultrastructural localization of calcium in normal and pathologic cartilage. In: Bonucci E, Motta PM (eds) Ultrastructure of skeletal tissues. Kluwer Academic Publishers, Boston, pp 129–152

    Google Scholar 

  • Lie T, Selvig KA (1974) Calcification of oral bacteria: an ultrastructural study of two strains of Bacterionema matruchotii. Scand J Dent Res 82:8–18

    PubMed  CAS  Google Scholar 

  • Lin JJ (1972) Intramitochondrial calcification in infant myocardium. Occurrence in a case of coarctation of aorta. Arch Pathol 94:366–369

    PubMed  CAS  Google Scholar 

  • Linde A, Goldberg M (1993) Dentinogenesis. Crit Rev Oral Biol Med 4:679–728

    PubMed  CAS  Google Scholar 

  • Lo Storto S, Di Grezia R, Silvestrini G, Cattabriga M, Bonucci E (1990) Studio morfologico ultrastrutturale di tartaro sopragengivale. Min Stomat 39:83–89

    Google Scholar 

  • Lucht U (1972) Osteoclasts and their relationship to bone as studied by electron microscopy. Z Zellforsch 135:211–228

    PubMed  CAS  Google Scholar 

  • Mann S (2001) Biomineralization. Principles and concepts in bioinorganic materials chemistry. Oxford University Press, Oxford

    Google Scholar 

  • Mann S, Sparks NHC, Blakemore RP (1987) Structure, morphology and crystal growth of anisotropic magnetite crystals in magnetic bacteria. Proc R Soc London B 231:477–487

    CAS  Google Scholar 

  • Mann S, Sparks NHC, Board RG (1990) Magnetotactic bacteria: microbiology, biomineralization, palaeomagnetism and biotecnology. Adv Microbiol Physiol 31:125–181

    CAS  Google Scholar 

  • Marinozzi V, Derenzini M, Nardi F, Gallo P (1977) Mitochondrial inclusions in human cancer of the gastrointestinal tract. Cancer Res 37:1556–1563

    PubMed  CAS  Google Scholar 

  • Marks SC Jr, Popoff SN (1990) Ultrastructural biology and pathology of the osteoclast. In: Bonucci E, Motta PM (eds) Ultrastructure of skeletal tissues. Kluwer Academic Publishers, Boston, pp 239–252

    Google Scholar 

  • Marsh ME (1999) Coccolith crystals of Pleurochrysis carterae: crystallographic faces, organization, and development. Protoplasma 207:54–66

    Google Scholar 

  • Martin JH, Matthews JL (1969) Mitochondrial granules in chondrocytes. Calcif Tissue Res 3:184–193

    PubMed  CAS  Google Scholar 

  • Matsushima N, Akiyama M, Terayama Y, Izumi Y, Miyake Y (1984) The morphology of bone mineral as revealed by small-angle X-ray scattering. Biochim Biophys Acta 801:298–305

    PubMed  CAS  Google Scholar 

  • Matthews JL (1970) Ultrastructure of calcifying tissues. Am J Anat 129:451–458

    PubMed  CAS  Google Scholar 

  • Meyer JL, Eick JD, Nancollas GH, Johnson LN (1972) A scanning electron microscopic study of the growth of hydroxyapatite crystals. Calcif Tissue Res 10:91–102

    PubMed  CAS  Google Scholar 

  • Miake Y, Aoba T, Moreno EC, Shimoda S, Prostak K, Suga S (1991) Ultrastructural studies on crystal growth of enameloid minerals in Elasmobranch and Teleost fish. Calcif Tissue Int 48:204–217

    Google Scholar 

  • Moradian-Oldak J, Weiner S, Addadi L, Landis WJ, Traub W (1991) Electron imaging and diffraction study of individual crystals of bone, mineralized tendon and synthetic carbonate apatite. Connect Tissue Res 25:219–228

    PubMed  CAS  Google Scholar 

  • Myers HM, Engström A (1965) A note on the organization of hydroxyapatite in calcified tendons. Exp Cell Res 40:182–185

    PubMed  CAS  Google Scholar 

  • Nanci A, Smith CE (1992) Development and calcification of enamel. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 313–343

    Google Scholar 

  • Neuman WF, Mulryan BJ, Martin GR (1960) Achemical study of osteoclasis based on studies with yttrium. Clin Orthop Relat Res 17:124–134

    Google Scholar 

  • Nylen MU, Scott DB, Mosley VM (1960) Mineralization of turkey leg tendon. II. Collagen-mineral relations revealed by electron and X-ray microscopy. In: Sognnaes RF (ed) Calcification in biological systems. American Association for the Advancement of Sciences, Washington, pp 129–142

    Google Scholar 

  • Nylen MU, Eanes ED, Omnell K-Ã… (1963) Crystal growth in rat enamel. J Cell Biol 18:109–123

    PubMed  CAS  Google Scholar 

  • Oberc MA, Engel WK(1977) Ultrastructural localization of calciumin normal and abnormal skeletal muscle. Lab Invest 36:566–577

    PubMed  CAS  Google Scholar 

  • Okazaki K, Inoue S (1976) Crystal property of the larval sea urchin spicule. Dev Growth Differ 18:413–434

    Google Scholar 

  • Oksanen A, Poukka R (1972) An electron microscopical study of nutritional muscular degeneration (NMD) of myocardium and skeletal muscle in calves. Acta Pathol Microbiol Scand Sect A 80:440–448

    CAS  Google Scholar 

  • Olson OP, Watabe N (1980) Studies on formation and resorption of fish scales. IV: Ultrastructure of developing scales in newly hatched fry of the sheepshead minnow, Cyprinodon variegatus (Atheriniformes: Cyprinodontidae). Cell Tissue Res 211:303–316

    PubMed  CAS  Google Scholar 

  • Onozato H, Watabe N (1979) Studies on fish scale formation and resorption III. Fine structure and calcification of the fibrillary plates of the scales in Carassius auratus (Cypriniformes: cyprinidae). Cell Tissue Res 201:409–422

    PubMed  CAS  Google Scholar 

  • Paegle RD (1969) Ultrastructure of calcium deposits in arteriosclerotic human aortas. J Ultrastruct Res 26:412–423

    PubMed  CAS  Google Scholar 

  • Palladini G, Carbone A (1966) Ultrastruttura della calcificazione distrofica renale da sublimato. Experientia 22:585

    Google Scholar 

  • Paule WJ, Bernick S, Strates B, Nimni ME (1992) Calcification of implanted vascular tissues associated with elastin in an experimental animal model. J Biomed Mater Res 26:1169–1177

    PubMed  CAS  Google Scholar 

  • Pautard FGE (1965) Calcification of baleen. In: Richelle LJ, Dallemagne MJ (eds) Calcified tissues. Université de Liège, Liège, pp 347–357

    Google Scholar 

  • Pautard FGE (1970) Calcification in unicellular organisms. In: Schraer H (ed) Biological calcification: cellular and molecular aspects. Appleton-Century-Crofts, New York, pp 105–201

    Google Scholar 

  • Pautard FGE (1975) The structure and genesis of calcium phosphates in vertebrates and invertebrates. In: Colloque Int. C.N.R.S.N° 230 (ed) Physico-chimie et cristallographie des apatites d’intérêt biologique. Centre National de la Recherche Scientifique, Paris, pp 93–100

    Google Scholar 

  • Pergolizzi S, Anastasi G, Santoro G, Trimarchi F (1995) The shape of enamel crystals as seen with high resolution scanning electron microscope. It J Anat Embryol 100:203–209

    CAS  Google Scholar 

  • Phakey P, Palamara J, Hall RK, McCredie DA (1995) Ultrastructural study of tooth enamel with amelogenesis imperfecta an AI-nephrocalcinosis syndrome. Connect Tissue Res 32:253–259

    PubMed  CAS  Google Scholar 

  • Pierce AM (1989) Attachment to and phagocytosis of mineral by alveolar bone osteoclasts. J Submicrosc Cytol Pathol 21:63–71

    PubMed  CAS  Google Scholar 

  • Plate U, Höhling HJ, Reimer L, Barckhaus RH, Wienecke R, Wiesmann H-P, Boyde A (1992) Analysis of the calcium distribution in predentine by EELS and of the early crystal formation in dentine by ESI and ESD. J Microsc 166:329–341

    PubMed  CAS  Google Scholar 

  • Plate U, Arnold S, Reimer L, Höhling H-J, Boyde A (1994) Investigation of the early mineralisation on collagen in dentine of rat incisors by quantitative electron spectroscopic diffraction (ESD). Cell Tissue Res 278:543–547

    PubMed  CAS  Google Scholar 

  • Posner AS, Harper RA, Muller SA, Menczel J (1965) Age changes in the crystal chemistry of bone apatite. Ann N Y Acad Sci 131:737–742

    PubMed  CAS  Google Scholar 

  • Quacci D, Dell’Orbo C, Pazzaglia UE (1990) Morphological aspects of rat metaphyseal cartilage pericellular matrix. J Anat 171:193–205

    PubMed  CAS  Google Scholar 

  • Robinson C, Shore RC, Wood SR, Brookes SJ, Smith DA, Wright JT, Connell S, Kirkham J (2003) Subunit structures in hydroxyapatite crystal development in enamel: implications for amelogenesis imperfecta. Connect Tissue Res 44:65–71

    PubMed  CAS  Google Scholar 

  • Robinson MJ, Strebel RF, Wagner BM (1968) Experimental tissue calcification IV. Ultrastructural observations in vagal calciphylaxis. Arch Path 85:503–515

    PubMed  CAS  Google Scholar 

  • Robinson RA (1952) An electron-microscopic study of the crystalline inorganic component of bone and its relationship to the organic matrix. J Bone Joint Surg 34-A:389–434

    PubMed  CAS  Google Scholar 

  • Robinson RA, Cameron DA (1956) Electron microscopy of cartilage and bone matrix at the distal epiphyseal line of the femur in the newborn infant. J Biophys Biochem Cytol 2:253–263

    PubMed  Google Scholar 

  • Robinson RA, Cameron DA (1964) Bone. In: Kurtz SM (ed) Electron microscopic anatomy. Academic Press, New York, pp 315–340

    Google Scholar 

  • Robinson RA, Watson ML (1952a) Collagen-crystal relationships in bone as seen in the electron microscope. Anat Rec 114:383–409

    PubMed  CAS  Google Scholar 

  • Robinson RA, Watson ML (1952b) Collagen-crystal relationships in bone as seen in the electron microscope. Anat Rec 114:383–409

    PubMed  CAS  Google Scholar 

  • Rönnholm E (1962) The amelogenesis of human teeth as revealed by electron microscopy II. The development of enamel crystallites. J Ultrastruct Res 6:249–303

    PubMed  Google Scholar 

  • Rousselle AV, Heymann D (2002) Osteoclastic acidification pathways during bone resorption. Bone 30:533–540

    PubMed  CAS  Google Scholar 

  • Rubin MA, Jasiuk I, Taylor J, Rubin J, Ganey T, Apkarian RP (2003) TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 33:270–282

    PubMed  Google Scholar 

  • Ruigrok TJC, Elbers PF (1972) The effects of calcium acetate on mitochondria in the perfused rat liver I: Accumulation of Ca++ and concomitant swelling. Cytobiologie 5:51–64

    Google Scholar 

  • Sahara N, Ashizawa Y, Nakamura K, Deguchi T, Suzuki K (1998) Ultrastructural features of odontoclasts that resorb enamel in human deciduous teeth prior to shedding. Anat Rec 252:215–228

    PubMed  CAS  Google Scholar 

  • Saladino AJ, Bentley PJ, Trump BF (1969) Ion movements in cell injury. Effect of amphotericin B on the ultrastructure and function of the epithelial cells of the toad bladder. Am J Pathol 54:421–466

    PubMed  CAS  Google Scholar 

  • Saleuddin ASM (1971) Fine structure of normal and regenerated shell of Helix. Can J Zool 49:37–41

    PubMed  CAS  Google Scholar 

  • Salo J, Lehenkari P, Mulari M, Metsikkö K, Väänänen HK (1997) Removal of osteoclast bone resorption products by transcytosis. Science 276:270–273

    PubMed  CAS  Google Scholar 

  • Schenk RK, Spiro D, Wiener J (1967) Cartilage resorption in the tibial epiphyseal plate of growing rats. J Cell Biol 34:275–291

    PubMed  CAS  Google Scholar 

  • Schlesinger PH, Blair HC, Teitelbaum SL, Edwards JC (1997) Characterization of the osteoclast ruffled border chloride channel and its role in bone resorption. J Biol Chem 272:18636–18643

    PubMed  CAS  Google Scholar 

  • Schmidt WJ (1933) Der Feinbau der anorganischen Grundmasse der Knochengewebes. Ber Oberhess Ges Natur u Heilk, Naturwiss Abt 15:219–247

    Google Scholar 

  • Schönbörner AA, Boivin G, Baud CA (1979) The mineralization processes in teleost fish scales. Cell Tissue Res 202:203–212

    PubMed  Google Scholar 

  • Schroeder L, Frank RM (1985) High-resolution transmission electron microscopy of adult human peritubular dentine. Cell Tissue Res 242:449–451

    PubMed  CAS  Google Scholar 

  • Scott BL, Pease DC (1956) Electron microscopy of the epiphyseal apparatus. Anat Rec 126:465–495

    PubMed  CAS  Google Scholar 

  • Selvig KA (1973) Electron microscopy of dental enamel: analysis of crystal lattice images. Z Zellforsch 137:271–280

    PubMed  CAS  Google Scholar 

  • Shitama K (1979) Calcification of aging articular cartilage in man. Acta Orthop Scand 50:613–619

    PubMed  CAS  Google Scholar 

  • Siperko LM, Landis WJ (2001) Aspects of mineral structure in normally calcifying avian tendon. J Struct Biol 135:313–320

    PubMed  CAS  Google Scholar 

  • Sire J-Y (1988) Evidence that mineralized spherules are involved in the formation of the superficial layer of the elasmoid scale in cichlids Cichlasoma octofasciatum and Hemichromis bimaculatus (Pisces, Teleostei): an epidermal active participation? Cell Tissue Res 253:165–172

    PubMed  CAS  Google Scholar 

  • Sire J-Y (1994) Light and TEM study of nonregenerated and experimentally regenerated scales of Lepisosteus oculatus (Holostei) with particular attention to ganoine formation. Anat Rec 240:189–207

    PubMed  CAS  Google Scholar 

  • Sire J-Y, Géraudie J, Meunier FJ, Zylberberg L (1987) On the origin of ganoine: histological and ultrastructural data on the experimental regeneration of the scales of Calamoichthys calabaricus (Osteichthyes, Brachyopterygii, Polypteridae). Am J Anat 180:391–402

    PubMed  CAS  Google Scholar 

  • Slavkin HC, Diekwisch T (1996) Evolution in tooth developmental biology: of morphology and molecules. Anat Rec 245:131–150

    PubMed  CAS  Google Scholar 

  • Stratmann U, Schaarschmidt K, Wiesmann HP, Plate U, Höhling HJ, Szuwart T (1997) The mineralization of mantle dentine and of circumpulpal dentine in the rat: an ultrastructural and element-amalytical study. Anat Embryol 195:289–297

    PubMed  CAS  Google Scholar 

  • Su X, Sun K, Cui FZ, Landis WJ (2003) Organization of apatite crystals in human woven bone. Bone 32:150–162

    PubMed  CAS  Google Scholar 

  • Sundquist K, Lakkakorpi P, Wallmark B, Väänänen K (1990) Inhibition of osteoclast proton transport by bafilomycin A1 abolishes bone resorption. Biochem Biophys Res Comm 168:309–313

    PubMed  CAS  Google Scholar 

  • Susheela AK, Kharb P (1990) Aortic calcification in chronic fluoride poisoning: biochemical and electronmicroscopic evidence. Exp Mol Pathol 53:72–80

    PubMed  CAS  Google Scholar 

  • Suzuki K, Sakae T, Kozawa Y (1998) Helix structure of ribbon-like crystals in bovine enamel. Connect Tissue Res 38:113–117

    PubMed  CAS  Google Scholar 

  • Takuma S (1960) Electron microscopy of the developing cartilaginous epiphysis. Arch Oral Biol 2:111–119

    PubMed  CAS  Google Scholar 

  • Tanimura A, McGregor DH, Anderson HC (1986) Calcification in atherosclerosis. I. Human studies. J Exp Pathol 2:261–273

    PubMed  CAS  Google Scholar 

  • Termine JD, Eanes ED, Greenfield DJ, Nylen MU (1973) Hydrazine-deproteinated bone mineral. Physical and chemical properties. Calcif Tissue Res 12:73–90

    PubMed  CAS  Google Scholar 

  • Teti A (1993) Biology of osteoclast and molecular mechanisms of bone resorption. It Jminer Electrol Metab 7:123–133

    CAS  Google Scholar 

  • Teti A, Blair HC, Schlesinger P, Grano M, Zambonin-Zallone A, Kahn AJ, Teitelbaum SL, Hruska KA (1989) Extracellular protons acidify osteoclasts, reduce cytosolic calcium, and promote expression of cell-matrix attachment structures. J Clin Invest 84:773–780

    PubMed  CAS  Google Scholar 

  • Theilade J, Fejerskov O, Horsted M (1976) A transmission electron microscopic study of 7-day old bacterial plaque in human tooth fissures. Arch Oral Biol 21:587–598

    PubMed  CAS  Google Scholar 

  • Thomas RS, Greenawalt JW (1968) Microincineration, electron microscopy, and electron diffraction of calcium-phosphate-loaded mitochondria. J Cell Biol 39:55–76

    PubMed  CAS  Google Scholar 

  • Thyberg J (1974) Electron microscopic studies on the initial phases of calcification in guinea pig epiphyseal cartilage. J Ultrastruct Res 46:206–218

    PubMed  CAS  Google Scholar 

  • Thyberg J, Friberg U (1971) Ultrastructure of the epiphyseal plate of the normal guinea pig. Z Zellforsch 122:254–272

    PubMed  CAS  Google Scholar 

  • Tong W, Glimcher MJ, Katz JL, Kuhn L, Eppell SJ (2003) Size and shape of mineralites in young bovine bone measured by atomic force microscopy. Calcif Tissue Int 72:592–598

    PubMed  CAS  Google Scholar 

  • Towe KM (1967) Echinoderm calcite: single crystal or polycrystalline aggregate. Science 157:1048–1050

    PubMed  CAS  Google Scholar 

  • Towe KM, Cifelli R (1967) Wall ultrastructure in the calcareous foraminifera: crystallographic aspects and a model for calcification. J Paleontol 41:742–762

    Google Scholar 

  • Towe KM, Thompson GR (1972) The structure of some bivalve shell carbonates prepared by ion-beam thinning. A comparison study. Calcif Tissue Res 10:38–48

    CAS  Google Scholar 

  • Traub W, Arad T, Weiner S (1989) Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. Proc Natl Acad Sci USA 86:9822–9826

    PubMed  CAS  Google Scholar 

  • Traub W, Arad T, Weiner S (1992) Origin of mineral crystal growth in collagen fibrils. Matrix 12:251–255

    PubMed  CAS  Google Scholar 

  • Travis DF (1968a) Comparative ultrastructure and organization of inorganic crystals and organic matrices of mineralized tissues. Biology of the mouth. American Association for the Advancement of Sciences, Washington, pp 237–297

    Google Scholar 

  • Travis DF (1968b) The structure and organization of, and the relationship between, the inorganic crystals and the organic matrix of the prismatic region of Mytilus edulis. J Ultrastruct Res 23:183–215

    CAS  Google Scholar 

  • Travis DF (1970) The comparative ultrastructure and organization of five calcified tissues. In: Schraer H (ed) Biological calcification: cellular and molecular aspects. Appleton-Century-Crofts, New York, pp 203–311

    Google Scholar 

  • Travis DF, Glimcher MJ (1964) The structure and organization of, and the relationship between the organic matrix and the inorganic crystals of embryonic bovine enamel. J Cell Biol 23:447–497

    PubMed  CAS  Google Scholar 

  • Travis DF, Gonsalves M (1969) Comparative ultrastructure and organization of the prismatic region of two bivalves and its possible relation to the chemical mechanism of boring. Am Zool 9:635–661

    Google Scholar 

  • Väänänen HK, Karhukorpi E-K, Sundquist K, Wallmark B, Roininen I, Hentunen T, Tuukkanen J, Lakkakorpi P (1990) Evidence for the presence of a proton pump of the vacuolar H+-ATPase type in the ruffled borders of osteoclasts. J Cell Biol 111:1305–1311

    PubMed  Google Scholar 

  • Väänänen HK, Salo J, Lehenkari P (1996) Mechanism of osteoclast-mediated bone resorption. J Bone Miner Metab 14:187–192

    Google Scholar 

  • Väänänen HK, Zhao H, Mulari M, Halleen JM (2000) The cell biology of osteoclast function. J Cell Sci 113:377–381

    PubMed  Google Scholar 

  • Vaes G (1988) Cellular biology and biochemical mechanism of bone resorption. A review of recent developments on the formation, activation, andmode of action of osteoclasts. Clin Orthop Relat Res 231:239–271

    PubMed  CAS  Google Scholar 

  • Valouch P, Obenberger J, Vrabec F (1974) Experimental corneal calcification. An ultrastructural study. Ophthal Res 6:6–14

    Google Scholar 

  • Vanden Berge JC, Storer RW (1995) Intratendinous ossification in birds: a review. J morphol 226:47–77

    Google Scholar 

  • Vasington FD, Greenawalt JW (1968) Osmotically lysed rat liver mitochondria. Biochemical and ultrastructural properties in relation to massive ion accumulation. J Cell Biol 39:661–675

    PubMed  CAS  Google Scholar 

  • Wachtel E, Weiner S (1994) Small-angle X-ray scattering study of dispersed crystals from bone and tendon. J Bone Miner Res 9:1651–1655

    PubMed  CAS  Google Scholar 

  • Wakita M (1993) Current studies on tooth enamel development in lower vertebrates. Kaibogaku Zasshi 68:399–409

    PubMed  CAS  Google Scholar 

  • Warshawsky H (1985) Ultrastructural studies on amelogenesis. In: Butler HT (ed) The chemistry and biology of mineralized tissues. EBSCO Media, Birmingham, pp 33–45

    Google Scholar 

  • Warshawsky H (1989) Organization of crystals in enamel. Anat Rec 224:242–262

    PubMed  CAS  Google Scholar 

  • Warshawsky H, Nanci A (1982) Stereo electron microscopy of enamel crystallites. J Dent Res 61:1504–1514

    Google Scholar 

  • Warshawsky H, Bai P, Nanci A (1987) Analysis of crystalline shape in rat incisor enamel. Anat Rec 218:380–390

    PubMed  CAS  Google Scholar 

  • Watabe N (1965) Studies on shell formation. XI. Crystal-matrix relationships in the inner layer of mollusk shells. J Ultrastruct Res 12:351–370

    PubMed  CAS  Google Scholar 

  • Watabe N (1967) Crystallographic analysis of coccolith of Coccolithus huxleyi. Calcif Tissue Res 1:114–121

    PubMed  CAS  Google Scholar 

  • Weiner S, Price PA (1986) Disaggregation of bone into crystals. Calcif Tissue Int 39:365–375

    PubMed  CAS  Google Scholar 

  • Weiner S, Traub W (1986) Organization of hydroxyapatite crystals within collagen fibrils. Fed Eur Biochem Soc 206:262–266

    CAS  Google Scholar 

  • Weiner S, Traub W (1989) Crystal size and organization in bone. Connect Tissue Res 21:259–265

    PubMed  CAS  Google Scholar 

  • Weiner S, Traub W (1991) Organization of crystals in bone. In: Suga S, Nakahara H (eds) Mechanisms and phylogeny of mineralization in biological systems. Springer, Tokyo, pp 247–253

    Google Scholar 

  • Weiner S, Arad T, Traub W (1991) Crystal organization in rat bone lamellae. Fed Eur Biochem Soc 285:49–54

    CAS  Google Scholar 

  • Weiner S, Veis A, Beniash E, Arad T, Dillon JW, Sabsay B, Siddiqui F (1999) Peritubular dentin formation: crystal organization and the macromolecular constituents in human teeth. J Struct Biol 126:27–41

    PubMed  CAS  Google Scholar 

  • Weiss RE, Watabe N (1978) Studies on the biology of fish bone — II. Bone matrix changes during resorption. Comp Biochem Physiol 61A:245–251

    CAS  Google Scholar 

  • Weiss RE, Watabe N (1979) Studies on the biology of fish bone. III. Ultrastructure of osteogenesis and resorption in osteocytic (cellular) and anosteocytic (acellular) bones. Calcif Tissue Int 28:43–56

    PubMed  CAS  Google Scholar 

  • Wheeler AP (1992) Mechanisms of molluscan shell formation. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 179–216

    Google Scholar 

  • Wiesmann H-P, Plate U, Höhling H-J, Barckhaus RH, Zierold K (1993) Analysis of early hard tissue formation in dentine by energy dispersive X-ray microanalysis and energy filtering transmission electron microscopy. Scanning Microsc 7:711–718

    PubMed  CAS  Google Scholar 

  • Wong V, Saleuddin ASM (1972) Fine structure of normal and regenerated shell of Helisoma duryi duryi. Can J Zool 50:1563–1568

    Google Scholar 

  • Woodhouse MA, Burston J (1969) Metastatic calcification of the myocardium. J Pathol 97:733–736

    PubMed  CAS  Google Scholar 

  • Yamada J, Watabe N (1979) Studies on fish scale formation and resorption I. Fine structure and calcification of the scales in Fundulus heteroclitus (Atheriniformes: cyprinodontidae). J Morphol 159:49–66

    Google Scholar 

  • Yamada M, Ozawa H (1978) Ultrastructural and cytochemical studies on the matrix vesicle calcification in the teeth of the killifish, Oryzias latipes. Arch Histol Jpn 41:309–323

    PubMed  CAS  Google Scholar 

  • Yamauchi M, Katz EP (1993) The post-translational chemistry and molecular packing of mineralizing tendon collagens. Connect Tissue Res 29:81–98

    PubMed  CAS  Google Scholar 

  • Young JR, Davis SA, Bown PR, Mann S (1999) Coccolith ultrastructure and biomineralisation. J Struct Biol 126:195–215

    PubMed  CAS  Google Scholar 

  • Ziv V, Weiner S (1994) Bone crystal sizes: a comparison of transmission electron microscopic and X-ray diffraction line width broadening techniques. Connect Tissue Res 30:165–175

    PubMed  CAS  Google Scholar 

  • Zylberberg L, Géraudie J, Meunier F, Sire J-Y (1992) Biomineralization in the integumental skeleton of the living lower vertebrates. In: Hall BK (ed) Bone, vol 4: Bone metabolism and mineralization. CRC Press, Boca Raton, pp 171–224

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). The Shape of Inorganic Particles. In: Biological Calcification. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36013-1_5

Download citation

Publish with us

Policies and ethics