Skip to main content

Historical Notes

  • Chapter
Biological Calcification
  • 718 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addadi L, Weiner S (1985) Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Natl Acad Sci USA 82:4110–4114

    Article  PubMed  CAS  Google Scholar 

  • Ameye L, Hermann R, Dubois P (2000) Ultrastructure of sea urchin calcified tissues after high-pressure freezing and freeze substitution. J Struct Biol 131:116–125

    Article  PubMed  CAS  Google Scholar 

  • Ameye L, De Becker G, Killian C, Wilt F, Kemps R, Kuypers S, Dubois P (2001) Proteins and saccharides of the sea urchin organic matrix of mineralization: characterization and localization in the spine skeleton. J Struct Biol 134:56–66

    Article  PubMed  CAS  Google Scholar 

  • Amprino R (1955) Struttura microscopica e rinnovamento delle ossa. Atti Soc Ital Patol 4:11–68

    Google Scholar 

  • Amprino R, Engström A (1952) Studies on X ray absorption and diffraction of bone tissue. Acta Anat 15:1–22

    PubMed  CAS  Google Scholar 

  • Anderson HC (1976) Matrix vesicles of cartilage and bone. In: Bourne GH (ed) The biochemistry and physiology of bone. Academic Press, New York, pp 135–157

    Google Scholar 

  • Ascenzi A (1950) On the existence of bonds between ossein and inorganic bone fraction. Science 112:84–86

    Article  PubMed  CAS  Google Scholar 

  • Ascenzi A, Chiozzotto A (1955) Electron microscopy of the bone ground substance using the pseudo-replica technique. Experientia 11:140

    Article  PubMed  CAS  Google Scholar 

  • Ascenzi MG, Lomovtsev A (2006) Collagen orientation patterns in human secondary osteons, quantified in the radial direction by confocal microscopi. J Struct Biol 153:14–30

    Article  PubMed  CAS  Google Scholar 

  • Bedouet L, Schuller JM, Marin F, Milet C, Lopez E, Giraud M (2001) Soluble proteins of the nacre of the giant oyster Pinctada maxima and of the abalone Haliotis tuberculata: extraction and partial analysis of nacre proteins. Comp Biochem Physiol B Biochem Mol Biol 128:389–400

    Article  PubMed  CAS  Google Scholar 

  • Beertsen W, van den Bos T (1989) Calcification of dentinal collagen by cultured rabbit periosteum: the role of alkaline phosphatase. Matrix 9:159–171

    PubMed  CAS  Google Scholar 

  • Benson SC, Wilt FH (1992) Calcification of spicules in the sea urchin embryo. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 157–178

    Google Scholar 

  • Bevelander G, Nakahara H (1969) An electron microscope study of the formation of the nacreous layer in the shell of certain bivalve molluscs. Calcif Tissue Res 3:84–92

    Article  PubMed  CAS  Google Scholar 

  • Bianco P (1990) Ultrastructural immunohistochemistry of noncollagenous proteins in calcified tissues. In: Bonucci E, Motta PM (eds) Ultrastructure of skeletal tissues. Kluwer Academic Publishers, Boston, pp 63–78

    Google Scholar 

  • Bianco P (1992) Structure and mineralization of bone. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 243–268

    Google Scholar 

  • Bianco P, Gehron Robey P (1999) Diseases of bone and the stromal cell lineage. J Bone Miner Res 14:336–341

    Article  PubMed  CAS  Google Scholar 

  • Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192

    Article  PubMed  CAS  Google Scholar 

  • Bonucci E (1969) Further investigation on the organic/inorganic relationships in calcifying cartilage. Calcif Tissue Res 3:38–54

    Article  PubMed  CAS  Google Scholar 

  • Bonucci E (1971) The locus of initial calcification in cartilage and bone. Clin Orthop Relat Res 78:108–139

    Article  PubMed  CAS  Google Scholar 

  • Bonucci E (1984) Matrix vesicles: their role in calcification. In: Linde A (ed) Dentin and dentinogenesis. CRC Press, Boca Raton, pp 135–154

    Google Scholar 

  • Bonucci E (1992) Role of collagen fibrils in calcification. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 19–39

    Google Scholar 

  • Bonucci E (2002a) Crystal ghosts and biological mineralization: fancy spectres in an old castle, or neglected structures worthy of belief? J Bone Miner Metab 20:249–265

    Article  PubMed  Google Scholar 

  • Bonucci E (2002b) Physiopathology of cancer metastases in bone and of the changes they induce in bone remodeling. Rend Fis Acc Lincei 13:181–246

    Google Scholar 

  • Bonucci E, Silvestrini G, Di Grezia R (1988) The ultrastructure of the organic phase associated with the inorganic substance in calcified tissues. Clin Orthop Relat Res 233:243–261

    PubMed  Google Scholar 

  • Boskey AL (1998) Biomineralization: conflicts, challenges, and opportunities. J Cell Biochem 30/31:83–91

    Article  Google Scholar 

  • Boskey AL, Reddi AH (1983) Changes in lipids during matrix-induced endochondral bone formation. Calcif Tissue Int 35:549–554

    Article  PubMed  CAS  Google Scholar 

  • Boyan BD, Schwartz Z, Swain LD, Khare A (1989) Role of lipids in calcification of cartilage. Anat Rec 224:211–219

    Article  PubMed  CAS  Google Scholar 

  • Boyan BD, Swain LD, Everett MM, Schwartz Z (1992) Mechanisms of microbial mineralization. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 129–156

    Google Scholar 

  • Bradley DE (1960) Replica techniques in applied electron microscopy. J R Microsc Soc 79:101–118

    Google Scholar 

  • Butler WT (1984) Matrix macromolecules of bone and dentin. Collagen Rel Res 4:297–307

    CAS  Google Scholar 

  • Cabrini RL (1961) Histochemistry of ossification. Int Rev Cytol 2:283–306

    Google Scholar 

  • Caglioti V (1935) Sulla struttura delle ossa. Atti V Congresso Nazionale Chimica Pura Applicata. Rome, Associazione Italiana di Chimica, pp 320–331

    Google Scholar 

  • Caglioti V, Ascenzi A, Santoro A (1956) Correlation of electron microscopy with X-ray diffraction and optical birefringence in the study of bone. Stockholm, Proceedings Stockholm Conference on Electron Microscopy, pp 234–237

    Google Scholar 

  • Cameron DA (1963) The fine structure of bone and calcified cartilage. A critical review of the contribution of electron microscopy to the understanding of osteogenesis. Int Rev Cytol 11:283–306

    Google Scholar 

  • Carlson CS, Tulli HM, Jayo MJ, Loeser RF, Tracy RP, Mann KG, Adams MR (1993) Immunolocalization of noncollagenous bone matrix proteins in lumbar vertebrae from intact and surgically menopausal cynomolgus monkeys. J Bone Miner Res 8:71–81

    PubMed  CAS  Google Scholar 

  • Carlström D (1955) X-ray crystallographic studies on apatites and calcified structures. Acta Radiol Suppl 121:1–59

    PubMed  Google Scholar 

  • Carmichael DJ, Dodd CM (1973) An investigation of the phosphoprotein of the bovine dentin matrix. Biochim Biophys Acta 317:187–192

    PubMed  CAS  Google Scholar 

  • Carneiro J, Leblond CP (1959) Role of osteoblasts and odontoblasts in secreting the collagen of bone and dentin, as shown by radioautography in mice given tritium-labelled glycine. Exp Cell Res 18:291–300

    Article  PubMed  CAS  Google Scholar 

  • Cartier P, Picard J (1955a) La minéralisation du cartilage ossifiable. II. — Le système ATPasique du cartilage. Bull Soc Chim Biol 37:661–675

    PubMed  CAS  Google Scholar 

  • Cartier P, Picard J (1955b) La minéralisation du cartilage ossifiable. III. — Le mècanisme de la réaction ATPasique du cartilage. Bull Soc Chim Biol 37:1159–1168

    PubMed  CAS  Google Scholar 

  • Cartier P, Picard J (1955c) La minéralisation du cartilage ossifiable: IV. — La signification de la réaction ATPasique. Bull Soc Chim Biol 37:1169–1176

    PubMed  CAS  Google Scholar 

  • Cassella JP, Pereira R, Khillan JS, Prockop DJ, Garrington N, Ali SY (1994) An ultrastructural, microanalytical, and spectroscopic study of bone from a transgenic mouse with a COL1.A1 pro-alpha-1 mutation. Bone 15:611–619

    Article  PubMed  CAS  Google Scholar 

  • Chang SR, Chiego D Jr, Clarkson BH (1996) Characterization and identification of a human dentin phosphophoryn. Calcif Tissue Int 59:149–153

    Article  PubMed  CAS  Google Scholar 

  • Chen NX, Moe SM (2004) Vascular calcification in chronic kidney disease. Semin Nephrol 24:61–68

    Article  PubMed  CAS  Google Scholar 

  • Chen C-C, Boskey AL, Rosenberg LC (1984) The inhibitory effect of cartilage proteoglycans on hydroxyapatite growth. Calcif Tissue Int 36:285–290

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Solal L, Lian JB, Kossiva D, Glimcher MJ (1979) Identification of organic phosphorus covalently bound to collagen and non-collagenous proteins of chicken-bone matrix. Biochem J 177:81–98

    PubMed  CAS  Google Scholar 

  • Daculsi G, Bouler J-M, LeGeros RZ (1997) Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials. Int Rev Cytol 172:129–191

    Article  PubMed  CAS  Google Scholar 

  • Dallemagne MJ (1951) L’os et les mécanismes de sa formation. Les phosphates de calcium, la biochimie de l’ossification et la composition de l’os. J Physiol 43:425–515

    CAS  Google Scholar 

  • Dallemagne MJ, Brasseur H (1942) La diffraction des rayons X par la substance minérale osseuse. Bull Soc R Sci Liége 8/9:1–19

    Google Scholar 

  • Dallemagne MJ, Melon J (1946) Nouvelles recherches relatives aux propriétés optique de l’os: la biréfringencede l’os minéralisé; relations entre les fractions organiques et inorganique de l’os. J Washington Acad Sci 36:181–195

    CAS  Google Scholar 

  • Dawson JM (1946) X-ray diffraction pattern of bone: evidence of reflexions due to the organic constituent. Nature 157:660–661

    Google Scholar 

  • de Ricqlès A, Meunier FJ, Castanet J, Francillon-Vieillot H (1991) Comparative microstructure of bone. In: Hall BK (ed) Bone, vol. 3: Bone matrix and bone specific products. CRC Press, Boca Raton, pp 1–78

    Google Scholar 

  • deJong WF (1926) La substance minérale dans les os. Rec Trav Chim 45:445–446

    Article  CAS  Google Scholar 

  • Delany AM, Amling M, Priemel M, Howe C, Baron R, Canalis E (2000) Osteopenia and decreased bone formation in osteonectin-deficient mice. J Clin Invest 105:915–923

    PubMed  CAS  Google Scholar 

  • Deutsch D, Catalano-Sherman J, Dafni L, David S, Palmon A (1995) Enamel matrix proteins and ameloblast biology. Connect Tissue Res 32:97–107

    PubMed  CAS  Google Scholar 

  • Dickson IR, Dimuzio MT, Volpin D, Ananthanarayanan S, Veis A (1975) The extraction of phosphoproteins from bovine dentin. Calcif Tissue Res 19:51–61

    Article  PubMed  CAS  Google Scholar 

  • Diekwisch TGH, Ware J, Fincham AG, Zeichner-David M (1997) Immunohistochemical similarities and differences between amelogenin and tuftelin gene products during tooth development. J Histochem Cytochem 45:859–866

    PubMed  CAS  Google Scholar 

  • DiStefano V, Neuman WF, Rouser G (1953) The isolation of a phosphate ester from calcifiable cartilage. Arch Biochem Biophys 47:218–220

    Article  PubMed  CAS  Google Scholar 

  • Dunglas C, Septier D, Paine ML, Zhu DH, Snead ML, Goldberg M (2002) Ultrastructure of forming enamel in mouse bearing a transgene that disrupts the amelogenin self-assembly domains. Calcif Tissue Int 71:155–166

    Article  PubMed  CAS  Google Scholar 

  • Dziak R (1992) Role of lipids in osteogenesis: cell signaling and matrix calcification. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 59–71

    Google Scholar 

  • Dziewiatkowski DD, Di Ferrante N, Bronner F, Okinaka G (1957) Turnover of S35-sulfate in epiphyses and diaphyses of suckling rats. Nature of the S36-labelled compounds. J Exp Med 106:509–524

    Article  PubMed  CAS  Google Scholar 

  • Eanes ED (1992) Dynamics of calcium phosphate precipitation. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 1–17

    Google Scholar 

  • Elliott JC (1973) The problems of the composition and structure of the mineral components of the hard tissues. Clin Orthop Relat Res 93:313–345

    Article  PubMed  CAS  Google Scholar 

  • Engfeldt B, Reinholt FP (1992) Structure and calcification of epiphyseal growth cartilage. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 217–241

    Google Scholar 

  • Ennever J, Creamer H (1967) Microbiological calcification: bone mineral and bacteria. Calcif Tissue Res 1:87–93

    Article  PubMed  CAS  Google Scholar 

  • Fincham AG, Moradian-Oldak J, Simmer JP (1999) The structural biology of the developing dental enamel matrix. J Struct Biol 126:270–299

    Article  PubMed  CAS  Google Scholar 

  • Fitton Jackson S (1960) Fibrogenesis and the formation of matrix. In: Rodahl K, Nicholson JT, Brown EM (eds) Bone as a tissue. McGraw-Hill Book Company, New York, pp 165–185

    Google Scholar 

  • Frank RM (1970) Autoradiographie quantitative de l’amélogenèse en microscopie électronoque a l’aide de la proline tritiée chez le chat. Arch Oral Biol 15:569–581

    Article  PubMed  CAS  Google Scholar 

  • Freudenberg E, György P (1923) III. Der Verkalkungsvorgang bei der Entwicklung des Knochens. Ergebn inn Med 24:17–28

    CAS  Google Scholar 

  • Glimcher MJ (1959) Molecular biology of mineralized tissues with particular reference to bone. Rev Mod Phys 31:359–393

    Article  CAS  Google Scholar 

  • Glimcher MJ (1976) Composition, structure, and organization of bone and other mineralized tissues and the mechanism of calcification. In: Greep RO, Astwood EB (eds) Handbook of physiology: Endocrinology. American Physiological Society, Washington, pp 25–116

    Google Scholar 

  • Glimcher MJ (1989) Mechanism of calcification: role of collagen fibrils and collagen-phosphoprotein complexes in vitro and in vivo. Anat Rec 224:139–153

    Article  PubMed  CAS  Google Scholar 

  • Glimcher MJ (1990) The nature of the mineral component of bone and the mechanism of calcification. In: Avioli LV, Krane SM (eds) Metabolic bone disease and clinically related disorders. W.B. Saunders Company, Philadelphia, pp 42–68

    Google Scholar 

  • Glimcher MJ (1992) The nature of the mineral component of bone and the mechanism of calcification. In: Coe FL, Favus MJ (eds) Disorders of bone and mineral metabolism. Raven Press, New York, pp 265–286

    Google Scholar 

  • Glimcher MJ, Krane SM (1968) The organization and structure of bone, and the mechanism of calcification. In: Gould BS (ed) Biology of collagen. Academic Press, London, pp 67–251

    Google Scholar 

  • Glimcher MJ, Brickley-Parsons D, Levine PT (1977) Studies of enamel proteins during maturation. Calcif Tissue Res 24:259–270

    Article  PubMed  CAS  Google Scholar 

  • Goldberg M, Septier D, Lécolle S, Chardin H, Quintana MA, Acevedo AC, Gafni G, Dillouya D, Vermelin L, Thonemann B, Schmalz G, Bissila-Mapahou P, Carreau JP (1995) Dental mineralization. Int J Dev Biol 39:93–110

    PubMed  CAS  Google Scholar 

  • Gomez S (2002) Crisóstomo Martínez, 1638–1694. The discovery of trabecular bone. Endocrine 17:3–4

    Article  PubMed  CAS  Google Scholar 

  • Gowen M (1992) Cytokines and bone metabolism. CRC Press, Boca Raton

    Google Scholar 

  • Gowen M (1994) Cytokines and cellular interactions in the control of bone remodeling. In: Heersche JNM, Kanis JA (eds) Bone and mineral research/8. Elsevier, Amsterdam, pp 77–114

    Google Scholar 

  • Grégoire C (1957) Topography of the organic components in mother-of-pearl. J Biophys Biochem Cytol 3:797–806

    Article  PubMed  Google Scholar 

  • Gutman AB, Yu TF (1950) A concept of the role of enzymes in endochondral calcification. In: Reifenstein EC (ed) Metabolic interrelations. Josiah Macy Jr Foundation, New York, pp 167–190

    Google Scholar 

  • Harris HA (1932) Glycogen in cartilage. Nature (London) 130:996–997

    CAS  Google Scholar 

  • Hirschman A, Dziewiatkowski DD (1966) Protein-polysaccharide loss during endochondral ossification: immunochemical evidence. Science 154:393–395

    Article  PubMed  CAS  Google Scholar 

  • Höhling HJ, Barckhaus RH, Krefting E-R, Althoff J, Quint P (1990) Collagen mineralization: aspects of the structural relationship between collagen and the apatitic crystallites. In: Bonucci E, Motta PM (eds) Ultrastructure of skeletal tissues. Kluwer Academic Publishers, Boston, pp 41–62

    Google Scholar 

  • Hoshi K, Ejiri S, Ozawa H (2000) Ultrastructural, cytochemical, and biophysical aspects of mechanisms of bone matrix calcification. Acta Anat Nippon 75:457–465

    PubMed  CAS  Google Scholar 

  • Hunter GK (1991) Role of proteoglycan in the provisional calcification of cartilage. A review and reinterpretation. Clin Orthop Relat Res 262:256–280

    PubMed  Google Scholar 

  • Hunter GK (1992) In vitro studies on matrix-mediated mineralization. In: Hall BK (ed) Bone, volume 4: Bone metabolism and mineralization. CRC Press, Boca Raton, pp 225–247

    Google Scholar 

  • Hunziker EB, Herrmann W (1990) Ultrastructure of cartilage. In: Bonucci E, Motta PM (eds) Ultrastructure of skeletal tissues. Kluwer Academic Publishers, Boston, pp 79–109

    Google Scholar 

  • Inaoka T, Lean JM, Bessho T, Chow JWM, Mackay A, Kokubo T, Chambers TJ (1995) Sequential analysis of gene expression after an osteogenic stimulus: c-fos expression is induced in osteocytes. Biochem Biophys Res Commun 217:264–270

    Article  PubMed  CAS  Google Scholar 

  • Ishigaki R, Takagi M, Igarashi M, Ito K (2002) Gene expression and immunohistochemical localization of osteonectin in association with early bone formation in the developing mandible. Histochem J 34:57–66

    Article  PubMed  CAS  Google Scholar 

  • Jakoby MGIV, Semenkovich CF (2000) The role of osteoprogenitors in vascular calcification. Curr Opin Nephrol Hypertens 9:11–15

    Article  PubMed  Google Scholar 

  • Karg HA, Burger EH, Lyaruu DM, Wöltgens JHM, Bronckers ALJJ (1997) Gene expression and immunolocalisation of amelogenins in developing embryonic and neonatal hamster teeth. Cell Tissue Res 288:545–555

    Article  PubMed  CAS  Google Scholar 

  • Kay MI, Young RA, Posner AS (1964) Crystal structure of hydroxyapatite. Nature 204: 1050–1052

    Article  PubMed  CAS  Google Scholar 

  • Kellenberger E, Rouiller C (1950) Die Knochenstruktur, untersucht mit dem Elektronenmikroskop. Schweiz Z Allg Pathol Bakteriol 13:783–788

    Article  CAS  Google Scholar 

  • Kergosien N, Sautier J-M, Forest N (1998) Gene and protein expression during differentiation and matrix mineralization in a chondrocyte cell culture system. Calcif Tissue Int 62: 114–121

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S (1971) Acid mucopolysaccharides in calcified tissues. Int Rev Cytol 30: 257–371

    PubMed  CAS  Google Scholar 

  • Lacroix P (1960) Ca45 autoradiography in the study of bone tissue. In: Rodahl K, Nicholson JT, Brown EM (eds) Bone as a tissue. McGraw-Hill, New York, pp 262–279

    Google Scholar 

  • Leblond CP, Warshawsky H (1979) Dynamic of enamel formation in the rat incisor tooth. J Dent Res 58:950–975

    PubMed  CAS  Google Scholar 

  • Leblond CP, Lacroix P, Ponlot R, Dhem A (1959) Les stades initiaux de l’ostéogenèse. Nouvelles données histochimique et autoradiographiques. Bull Acad R Med Belg 24: 421–443

    Google Scholar 

  • Levi-Kalisman Y, Falini G, Addadi L, Weiner S (2001) Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. J Struct Biol 135:8–17

    Article  PubMed  CAS  Google Scholar 

  • Linde A (1992) Structure and calcification of dentin. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 269–311

    Google Scholar 

  • Linquist B, Budy AM, McLean FC, Howard JL (1960) Skeletal metabolism in estrogen-treated rats studied by means of Ca45. Endocrinology 66:100–111

    Article  Google Scholar 

  • Lohmander S (1976) Proteoglycans of hyaline cartilage. Thesis. Karolinska Institute

    Google Scholar 

  • Lohmander S, Hjerpe A (1975) Proteoglycans of mineralizing rib and epiphyseal cartilage. Biochim Biophys Acta 404:93–109

    PubMed  CAS  Google Scholar 

  • Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131

    Article  PubMed  CAS  Google Scholar 

  • Majno G, Rouiller C (1951) Die alkalische Phosphatase in der Biologie des Knochengewebes. Histochemische Untersuchungen. Virchows Arch 321:1–61

    Article  PubMed  CAS  Google Scholar 

  • Marie PJ (2001) Cellular and molecular basis of fibrous dysplasia. Histol Histopathol 16: 981–988

    PubMed  CAS  Google Scholar 

  • McKee MD, Nanci A (1995) Postembedding colloidal-gold immunocytochemistry of noncollagenous extracellular matrix proteins in mineralized tissues. Microsc Res Technol 31:44–62

    Article  CAS  Google Scholar 

  • Nagai N, Frank RM (1974) Electron microscopic autoradiography of Ca45 during dentinogenesis. Cell Tissue Res 155:513–523

    Article  PubMed  CAS  Google Scholar 

  • Nanci A (1999) Content and distribution of noncollagenous matrix proteins in bone and cementum: relationship to speed of formation and collagen packing density. J Struct Biol 126:256–269

    Article  PubMed  CAS  Google Scholar 

  • Neuman WF, Neuman MW (1953) The nature of the mineral phase of bone. Chem Rev 53:1–45

    Article  CAS  Google Scholar 

  • Nusgens B, Chantraine A, Lapiere CM (1972) The protein in the matrix of bone. Clin Orthop Relat Res 88:252–274

    Article  PubMed  CAS  Google Scholar 

  • Overall CM, Limeback H (1988) Identification and characterization of enamel proteinases isolated from developing enamel. Amelogeninolytic serine proteinases are associated with enamel maturation in pig. Biochem J 256:965–972

    PubMed  CAS  Google Scholar 

  • Paschalis EP, Jacenko O, Olsen B, Mendelsohn R, Boskey AL (1996) FT-IR microscopic analysis identified alterations in mineral properties in bones from mice transgenic for type X collagen. Bone 18:151–156

    Article  Google Scholar 

  • Pautard FGE (1970) Calcification in unicellular organisms. In: Schraer H (ed) Biological calcification: cellular and molecular aspects. Appleton-Century-Crofts, New York, pp 105–201

    Google Scholar 

  • Picard J, Cartier P (1956a) La minéralisation du cartilage ossifiable. V. — Glycolyse et glycogénolyse du cartilage. Bull Soc Chim Biol 38:697–706

    PubMed  CAS  Google Scholar 

  • Picard J, Cartier P (1956b) La minéralisation du cartilage ossifiable. VI. — Influence des phosphodérivés du catabolisme glucidique sur le métabolisme et la minéralisation du cartilage. Bull Soc Chim Biol 38:707–715

    PubMed  CAS  Google Scholar 

  • Posner AS (1960) The nature of the inorganic phase in calcified tissues. In: Sognnaes RF (ed) Calcification in biological systems. Am Assoc Adv Sci, Washington, pp 373–394

    Google Scholar 

  • Posner AS (1969) Crystal chemistry of bone mineral. Physiol Rev 49:760–792

    PubMed  CAS  Google Scholar 

  • Posner AS (1987) Bone mineral and the mineralization process. In: Peck WA (ed) Bone and mineral research 5. Elsevier Science Publisher, Amsterdam, pp 65–116

    Google Scholar 

  • Posner AS, Perloff A, Diorio AF (1958) Refinement of the hydroxyapatite structure. Acta Crystallogr 11:308–309

    Article  CAS  Google Scholar 

  • Posner AS, Betts F, Blumenthal NC (1978) Properties of nucleating systems. Metab Bone Dis Rel Res 1:179–183

    Article  CAS  Google Scholar 

  • Prince CW, Oosawa T, Butler WT, Tomana M, Bhown AS, Bhown M, Schrohenloher RE (1987) Isolation, characterization, and biosynthesis of a phosphorylated glycoprotein from rat bone. J Biol Chem 262:2900–2907

    PubMed  CAS  Google Scholar 

  • Pritchard JJ (1952) A cytological and histochemical study of bone and cartilage formation in the rat. J Anat 86:259–277

    PubMed  CAS  Google Scholar 

  • Reith EJ, Cotty VF (1962) Autoradiographic studies on calcification of enamel. Arch Oral Biol 7:365–372

    Article  PubMed  CAS  Google Scholar 

  • Riminucci M, Silvestrini G, Bonucci E, Fisher LW, Gehron Robey P, Bianco P (1995) The anatomy of bone sialoprotein immunoreactive sites in bone as revealed by combined ultrastructural histochemistry and immunohistochemistry. Calcif Tissue Int 57:277–284

    Article  PubMed  CAS  Google Scholar 

  • Riminucci M, Fisher LW, Shenker A, Spiegel AM, Bianco P, Gehron Robey P (1997) Fibrous dysplasia of bone in the McCune-Albright syndrome. Abnormalities in bone formation. Am J Pathol 151:1587–1600

    PubMed  CAS  Google Scholar 

  • Rittling SR, Denhardt DT (1999) Osteopontin function in pathology: lessons from osteopontin-deficient mice. Exp Nephrol 7:103–113

    Article  PubMed  CAS  Google Scholar 

  • Robey PG (1992) Cell-mediated calcification in vitro. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 107–127

    Google Scholar 

  • Robey PG (1996) Vertebrate mineralized matrix proteins: structure and function. Connect Tissue Res 35:131–136

    PubMed  CAS  Google Scholar 

  • Robinson C, Brookes SJ, Shore RC, Kirkham J (1998) The developing enamel matrix: nature and function. Eur J Oral Sci 106:282–291

    PubMed  CAS  Google Scholar 

  • Robinson RA (1952) An electron-microscopic study of the crystalline inorganic component of bone and its relationship to the organic matrix. J Bone Joint Surg 34A:389–434

    CAS  Google Scholar 

  • Robinson RA, Watson ML (1952) Collagen-crystal relationships in bone as seen in the electron microscope. Anat Rec 114:383–409

    Article  PubMed  CAS  Google Scholar 

  • Robison R (1923) The possible significance of hexosephosphoric esters in ossification. Biochem J 17:286–293

    PubMed  CAS  Google Scholar 

  • Robison R, Rosenheim AH (1934) Calcification of hypertrophic cartilage in vitro. Biochem J 28:684–698

    PubMed  CAS  Google Scholar 

  • Rönnholm E (1962) The amelogenesis of human teeth as revealed by electron microscopy II. The development of enamel crystallites. J Ultrastruct Res 6:249–303

    Article  PubMed  Google Scholar 

  • Rouiller C, Huber L, Rutishauser E (1952) La structure de la dentine. Étude comparée de l’os et de l’ivoire au microscope électronique. Acta Anat 16:16–28

    PubMed  CAS  Google Scholar 

  • Rutishauser E, Huber L, Kellenberger E, Majno G, Rouiller C (1950) Étude de la structure de l’os au microscope électronique. Arch Sci 3:175–180

    Google Scholar 

  • Saleuddin ASM (1971) Fine structure of normal and regenerated shell of Helix. Can J Zoo 49:37–41

    CAS  Google Scholar 

  • Schajowicz F, Cabrini RL (1958) Histochemical studies on glycogen in normal ossification and calcification. J Bone Joint Surg 40A:1081–1092

    Google Scholar 

  • Sela J, Schwartz Z, Swain LD, Boyan BD (1992) The role of matrix vesicles in calcification. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 73–105

    Google Scholar 

  • Sendroy J Jr, Hastings AB (1927) Studies on the solubility of calcium salts: III. The solubility of calcium carbonate and tertiary calcium phosphate under various conditions. J Biol Chem 71:797–846

    CAS  Google Scholar 

  • Simkiss K (1976) Cellular aspects of calcification. In: Watabe N, Wilbur KM (eds) The mechanisms of mineralization in invertebrates and plants. The University of South Carolina Press, Columbia, SC, pp 1–31

    Google Scholar 

  • Smith CE, Nanci A (1996) Protein dynamics of amelogenesis. Anat Rec 245:186–207

    Article  PubMed  CAS  Google Scholar 

  • Snead ML, Paine ML, Luo W, Zhu D-H, Yoshida B, Ley Y-P, Chen L-S, Paine CT, Burstein JM, Jitpukdeebudintra S, White SN, Bringas P Jr (1998) Transgene animal model for protein expression and accumulation into forming enamel. Connect Tissue Res 38:279–286

    PubMed  CAS  Google Scholar 

  • Sobel AE (1955) Local factors in the mechanism of calcification. Ann NY Acad Sci 60:713–731

    Article  PubMed  CAS  Google Scholar 

  • Sobel AE, Burger M (1954) Calcification XIV. Investigation of the role of chondroitin sulfate in the calcifying mechanism. Proc Soc Exper Biol Med 87:7–13

    CAS  Google Scholar 

  • Sobel AE, Burger M, Deane BC, Albaum HG, Cost K (1957) Calcification XVIII. Lack of correlation between calcification in vitro and glycolytic enzymes. Proc Soc Exper Biol Med 96:32–39

    CAS  Google Scholar 

  • Takagi M, Parmley RT, Toda Y, Austin RL (1982) Ultrastructural cytochemistry and immunocytochemistry of sulfated glycosamiglycans in epiphyseal cartilage. J Histochem Cytochem 30:1179–1185

    PubMed  CAS  Google Scholar 

  • Taves DR (1965) Mechanisms of calcification. Clin Orthop Relat Res 42:207–220

    PubMed  CAS  Google Scholar 

  • Termine JD, Belcourt AB, Conn KM, Kleinman HK (1981) Mineral and collagen-binding proteins of fetal calf bone. J Biol Chem 256:10403–10408

    PubMed  CAS  Google Scholar 

  • Tintut Y, Demer LL (2001) Recent advances in multifactorial regulation of vascular calcification. Curr Opin Lipidol 12:555–560

    Article  PubMed  CAS  Google Scholar 

  • Towe KM, Cifelli R (1967) Wall ultrastructure in the calcareous foraminifera: crystallographic aspects and a model for calcification. J Paleontol 41:742–762

    Google Scholar 

  • Travis DF (1970) The comparative ultrastructure and organization of five calcified tissues. In: Schraer H (ed) Biological calcification: cellular and molecular aspects. Appleton-Century-Crofts, New York, pp 203–311

    Google Scholar 

  • Uchiyama A, Suzuki M, Lefteriou B, Glimcher MJ (1986) Isolation and chemical characterization of the phosphoproteins of chicken bone matrix: heterogeneity in molecular weight and composition. Biochemistry 25:7572–7583

    Article  PubMed  CAS  Google Scholar 

  • Urist MR (1966) Origins of current ideas about calcification. Clin Orthop Relat Res 44:13–39

    PubMed  CAS  Google Scholar 

  • Veis A, Spector AR, Zamoscianyk H (1972) The isolation of an EDTA-soluble phosphoprotein from mineralizing bovine dentin. Biochim Biophys Acta 257:404–413

    PubMed  CAS  Google Scholar 

  • Vincent J, Haumont G (1960) Identification autoradiographique des ostéones métaboliques après administration de Ca45. Rev Franç Clin Biol 5:348–358

    CAS  Google Scholar 

  • Wadkins CL, Luben R, Thomas M, Humphreys R (1974) Physical biochemistry of calcification. Clin Orthop Relat Res 99:246–266

    Article  PubMed  CAS  Google Scholar 

  • Waldman J (1948) Calcification of hypertrophic epiphyseal cartilage in vitro following inactivation of phosphatase and other enzymes. Proc Soc Exp Biol Med 69:262–263

    CAS  PubMed  Google Scholar 

  • Warshawsky H (1989) Organization of crystals in enamel. Anat Rec 224:242–262

    Article  PubMed  CAS  Google Scholar 

  • Weidmann SM (1963) Calcification of skeletal tissues. Int Rev Connect Tiss Res 1:339–377

    CAS  Google Scholar 

  • Weiner S, Addadi L (2002) At the cutting edge. Science 298:375–376

    Article  PubMed  CAS  Google Scholar 

  • Weiner S, Traub W (1984) Macromolecules in mollusc shells and their function in biomineralization. Phil Trans R Soc London 304B:425–434

    Google Scholar 

  • Wheeler AP (1992) Mechanisms of molluscan shell formation. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 179–216

    Google Scholar 

  • Wilt FH (1999) Matrix and mineral in the sea urchin larval skeleton. J Struct Biol 126:216–226

    Article  PubMed  CAS  Google Scholar 

  • Wilt FH, Killian CE, Livingston BT (2003) Development of calcareous skeletal elements in invertebrates. Differentiation 71:237–250

    Article  PubMed  CAS  Google Scholar 

  • Wuthier RE (1973) The role of phospholipids in biological calcification: distribution of phospholipase activity in calcifying epiphyseal cartilage. Clin Orthop Relat Res 90: 191–200

    PubMed  Google Scholar 

  • Xu T, Bianco P, Fisher LW, Longenecker G, Smith E, Goldstein S, Bonadio J, Boskey A, Heegaard A-M, Sommer B, Satomura K, Dominguez P, Zhao C, Kulkarni AB, Gehron Robey P, Young MF (1998) Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat Genet 20:78–82

    Article  PubMed  CAS  Google Scholar 

  • Young JR, Davis SA, Bown PR, Mann S (1999) Coccolith ultrastructure and biomineralisation. J Struct Biol 126:195–215

    Article  PubMed  CAS  Google Scholar 

  • Zipkin I (1970) The inorganic composition of bones and teeth. In: Schraer H (ed) Biological calcification: cellular and molecular aspects. Appleton-Century-Crofts, New York, pp 69–103

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Historical Notes. In: Biological Calcification. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36013-1_2

Download citation

Publish with us

Policies and ethics