Skip to main content

Main Suggested Calcification Mechanisms: Extracellular Matrix

  • Chapter
Biological Calcification
  • 764 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abatangelo G, Daga-Gordini D, Castellani I, Cortivo R (1978) Some observations on the calcium ion binding of the eggshell matrix. Calcif Tissue Int 26:247–252

    CAS  Google Scholar 

  • Addadi L, Weiner S (1985) Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Natl Acad Sci USA 82:4110–4114

    PubMed  CAS  Google Scholar 

  • Addadi L, Berman A, Moradian Oldak J, Weiner S (1989) Structural and stereochemical relations between acidic macromolecules of organic matrices and crystals. Connect Tissue Res 21:127–135

    PubMed  CAS  Google Scholar 

  • Aizenberg J, Hanson J, Ilan M, Leiserowitz L, Koetzle TF, Addadi L, Weiner S (1995) Morphogenesis of calcitic sponge spicules: a role for specialized proteins interacting with growing crystals. FASEB J 9:262–268

    PubMed  CAS  Google Scholar 

  • Aizenberg J, Lambert G, Addadi L, Weiner S (1996) Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates. Adv Mater 8:222–226

    CAS  Google Scholar 

  • Aizenberg J, Lambert G, Weiner S, Addadi L (2002) Factors involved in the formation of amorphous and crystalline calcium carbonate: a study of an ascidian skeleton. J Am Chem Soc 124:32–39

    PubMed  CAS  Google Scholar 

  • Akisaka T, Nakayama M, Yoshida H, Inoue M (1998) Ultrastructural modifications of the extracellular matrix upon calcification of growth plate cartilage as revealed by quick-freeze deep etching technique. Calcif Tissue Int 63:47–56

    PubMed  CAS  Google Scholar 

  • Albeck S, Aizenberg J, Addadi L, Weiner S (1993) Interactions of various skeletal intracrystalline components with calcite crystals. J Am Chem Soc 115:11691–11697

    CAS  Google Scholar 

  • Albeck S, Addadi L, Weiner S (1996) Regulation of calcite crystal morphology by intracrystalline acidic proteins and glycoproteins. Connect Tissue Res 35:365–370

    PubMed  CAS  Google Scholar 

  • Alini M, Roughley PJ (2001) Changes in leucine-rich repeat proteoglycans during maturation of the bovine growth plate. Matrix Biol 19:805–813

    PubMed  CAS  Google Scholar 

  • Alini M, Matsui Y, Dodge GR, Poole AR (1992) The extracellular matrix of cartilage in the growth plate before and during calcification: changes in composition and degradation of type II collagen. Calcif Tissue Int 50:327–335

    PubMed  CAS  Google Scholar 

  • Althoff J, Quint P, Krefting E-R, Höhling HJ (1982) Morphological studies on the epiphyseal growth plate combined with biochemical and X-ray microprobe analyses. Histochemistry 74:541–552

    PubMed  CAS  Google Scholar 

  • Anghileri LJ, Dermietzel R (1973) Calcium-phosphate-phospholipid complexes in experimental tumors: their possible relationship with tumor calcification. Z Krebsforsch Klin Onkol 79:148–156

    CAS  Google Scholar 

  • Appleton J (1971) Ultrastructural observations on the inorganic/organic relationships in early cartilage calcification. Calcif Tissue Res 7:307–317

    PubMed  CAS  Google Scholar 

  • Armstrong AL, Barrach HJ, Ehrlich MG (2002) Identification of the metalloproteinase stromelysin in the physis. J Orthop Res 20:289–294

    PubMed  CAS  Google Scholar 

  • Arnold S, Plate U, Wiesmann H-P, Straatmann U, Kohl H, Höhling H-J (2001) Quantitative analyses of the biomineralization of different hard tissues. J Microsc 202:488–494

    PubMed  CAS  Google Scholar 

  • Arsenault AL (1988) Crystal-collagen relationships in calcified turkey leg tendons visualized by selected-area dark field electron microscopy. Calcif Tissue Int 43:202–212

    PubMed  CAS  Google Scholar 

  • Arsenault AL (1989) A comparative electron microscopic study of apatite crystals in collagen fibrils of rat bone, dentin and calcified turkey leg tendons. Bone and Mineral 6:165–177

    PubMed  CAS  Google Scholar 

  • Arsenault AL (1991) Image analysis of collagen-associated mineral distribution in cryogenically prepared turkey leg tendons. Calcif Tissue Int 48:56–62

    PubMed  CAS  Google Scholar 

  • Arsenault AL, Ottensmeyer FP (1983) Quantitative spatial distributions of calcium, phosphorus, and sulfur in calcifying epiphysis by high resolution electron spectroscopic imaging. Proc Natl Acad Sci U S A 80:1322–1326

    PubMed  CAS  Google Scholar 

  • Arsenault AL, Robinson BW (1989) The dentino-enamel junction: a structural and microanalytical study of early mineralization. Calcif Tissue Int 45:111–121

    PubMed  CAS  Google Scholar 

  • Arsenault AL, Frankland BW, Ottensmeyer FP (1991) Vectorial sequence of mineralization in the turkey leg tendon determined by electron microscopic imaging. Calcif Tissue Int 48:46–55

    PubMed  CAS  Google Scholar 

  • Ascenzi A, Benedetti EL (1959) An electron microscopic study of the foetal membranous ossification. Acta Anat 37:370–385

    PubMed  CAS  Google Scholar 

  • Ascenzi A, Bonucci E (1966) The osteon calcification as revealed by the electron microscope. In: Fleisch H, Blackwood HJJ, Owen M (eds) Calcified tissues 1965. Springer, Berlin Heidelberg New York, pp 142–146

    Google Scholar 

  • Ascenzi A, Françis C, Steve Bocciarelli D (1963) On the bone induced by estrogen in birds. J Ultrastruct Res 8:491–505

    PubMed  CAS  Google Scholar 

  • Ascenzi A, Bonucci E, Steve Bocciarelli D (1965) An electron microscope study of osteon calcification. J Ultrastruct Res 12:287–303

    PubMed  CAS  Google Scholar 

  • Ascenzi A, Bonucci E, Steve Bocciarelli D (1967) An electron microscope study on primary periosteal bone. J Ultrastruct Res 18:605–618

    PubMed  CAS  Google Scholar 

  • Ascenzi A, Bonucci E, Ripamonti A, Roveri N (1978) X-ray diffraction and electron microscope study of osteons during calcification. Calcif Tissue Res 25:133–143

    PubMed  CAS  Google Scholar 

  • Ascenzi A, Bonucci E, Generali P, Ripamonti A, Roveri N (1979) Orientation of apatite in single osteon samples as studied by pole figures. Calcif Tissue Int 29:101–105

    PubMed  CAS  Google Scholar 

  • Ascenzi A, Bigi A, Koch MH, Ripamonti A, Roveri N (1985) A low-angle X-ray diffraction analysis of osteonic inorganic phase using synchrotron radiation. Calcif Tissue Int 37:659–664

    PubMed  CAS  Google Scholar 

  • Ascenzi A, Benvenuti A, Bigi A, Foresti E, Koch MHJ, Mango F, Ripamonti A, Roveri N (1998) X-ray diffraction on cyclically loaded osteons. Calcif Tissue Int 62:266–273

    PubMed  CAS  Google Scholar 

  • Bachra BN (1967) Some molecular aspects of tissue calcification. Clin Orthop Relat Res 51:199–222

    PubMed  CAS  Google Scholar 

  • Baechtold AP, Wright JT, Yamauchi M, Spevak L, Camacho NP (2000) Dentin composition and structure in the oim mouse. In: Goldberg M, Boskey A, Robinson C (eds) Chemistry and biology of mineralized tissues. American Academy of Orthopaedic Surgeons, Rosemont, IL, pp 57–61

    Google Scholar 

  • Bai P, Warshawsky H (1985) Morphological studies on the distribution of enamel matrix proteins using routine electron microscopy and freeze-fracture replicas in the rat incisor. Anat Rec 212:1–16

    PubMed  CAS  Google Scholar 

  • Barckhaus RH, Krefting E-R, Althoff J, Quint P, Höhling HJ (1981) Electron-microscopic microprobe analysis on the initial stages of mineral formation in the epiphyseal growth plate. Cell Tissue Res 217:661–666

    PubMed  CAS  Google Scholar 

  • Belcher AM, Wu XH, Christensen RJ, Hansma PK, Stucky GD, Morse DE (1996) Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381:56–58

    CAS  Google Scholar 

  • Beniash E, Traub W, Veis A, Weiner S (2000) A transmission electron microscope study using vitrified ice sections of predentin: structural changes in the dentin collagenous matrix prior to mineralization. J Struct Biol 132:212–225

    PubMed  CAS  Google Scholar 

  • Benson SC, Wilt FH (1992) Calcification of spicules in the sea urchin embryo. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 157–178

    Google Scholar 

  • Berman A, Addadi L, Weiner S (1988) Interactions of sea-urchin skeleton macromolecules with growing calcite crystals — a study of intracrystalline proteins. Nature 331:546–548

    CAS  Google Scholar 

  • Berman A, Addadi L, Kvick Å, Leiserowitz L, Nelson M, Weiner S (1990) Intercalation of sea urchin proteins in calcite: study of a crystalline composite material. Science 250:664–667

    CAS  Google Scholar 

  • Bianco P (1990) Ultrastructural immunohistochemistry of noncollagenous proteins in calcified tissues. In: Bonucci E, Motta PM (eds) Ultrastructure of skeletal tissues. Kluwer Academic Publishers, Boston, pp 63–78

    Google Scholar 

  • Bigi A, Ripamonti A, Koch MHJ, Roveri N (1988) Calcified turkey leg tendon as structural model for bone mineralization. Int J Biol Macromol 10:282–286

    CAS  Google Scholar 

  • Bigi A, Dovigo L, Koch MHJ, Morocutti M, Ripamonti A, Roveri N (1991) Collagen structural organization in uncalcified and calcified human anterior longitudinal ligament. Connect Tissue Res 25:171–179

    PubMed  CAS  Google Scholar 

  • Bigi A, Gandolfi M, Koch MHJ, Roveri N (1996) X-ray diffraction study of in vitro calcification of tendon collagen. Biomaterials 17:1195–1201

    PubMed  CAS  Google Scholar 

  • Bigi A, Gandolfi M, Roveri N, Valdré G (1997) In vitro calcified tendon collagen: an atomic force and scanning electron microscopy investigation. Biomaterials 18:657–665

    PubMed  CAS  Google Scholar 

  • Bishop MA, Warshawsky H (1982) Electron microscopic studies on the potential loss of crystallites from routinely processed sections of young enamel in the rat incisor. Anat Rec 202:177–186

    PubMed  CAS  Google Scholar 

  • Blank S, Arnoldi M, Khoshnavaz S, Treccani L, Kuntz M, Mann K, Grathwohl G, Fritz M (2003) The nacre protein perlucin nucleates growth of calcium carbonate crystals. J Microsc 212:280–291

    PubMed  CAS  Google Scholar 

  • Blumenthal NC, Posner AS, Silverman LD, Rosenberg LC (1979) Effect of proteoglycans on in vitro hydroxyapatite formation. Calcif Tissue Int 27:75–82

    PubMed  CAS  Google Scholar 

  • Boanini E, Torricelli P, Gazzano M, Giardino R, Bigi A (2006) Nanocomposites of hydroxyapatite with aspartic acid and glutamic acid and their interaction with osteoblast-like cells. Biomaterials 27:4428–4433

    PubMed  CAS  Google Scholar 

  • Boivin G (1975) étude chez le rat d’une calcinose cutanée induite par calciphylaxie locale I. — Aspects ultrastructuraux. Arch Anat Microsc Morphol Exp 64:183–205

    PubMed  CAS  Google Scholar 

  • Boivin G, Walzer C, Baud CA (1987) Ultrastructural study of the long-term development of two experimental cutaneous calcinoses (topical calciphylaxis and topical calcergy) in the rat. Cell Tissue Res 247:525–532

    PubMed  CAS  Google Scholar 

  • Bonar LC, Lees S, Mook HA (1985) Neutron diffraction studies of collagen in fully mineralized bone. J Mol Biol 181:265–270

    PubMed  CAS  Google Scholar 

  • Bonucci E (1967) Fine structure of early cartilage calcification. J Ultrastruct Res 20:33–50

    PubMed  CAS  Google Scholar 

  • Bonucci E (1969) Further investigation on the organic/inorganic relationships in calcifying cartilage. Calcif Tissue Res 3:38–54

    PubMed  CAS  Google Scholar 

  • Bonucci E (1971) The locus of initial calcification in cartilage and bone. Clin Orthop Relat Res 78:108–139

    PubMed  CAS  Google Scholar 

  • Bonucci E (1975) The organic-inorganic relationships in calcified organic matrices. Physicochimie et cristallographie des apatites d’intérêt biologique. Centre National de la Recherche Scientifique, Paris, pp 231–246

    Google Scholar 

  • Bonucci E (1979) Presence of “crystal ghosts” in bone nodules. Calcif Tissue Int 29:181–182

    PubMed  CAS  Google Scholar 

  • Bonucci E (1984) The structural basis of calcification. In: Ruggeri A, Motta PM (eds) Ultrastructure of the connective tissue matrix. Martinus Nijhoff Publishing, Boston, pp 165–191

    Google Scholar 

  • Bonucci E (1987) Is there a calcification factor common to all calcifying matrices? Scanning Electron Microsc 1:1089–1102

    CAS  Google Scholar 

  • Bonucci E (1992a) Role of collagen fibrils in calcification. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 19–39

    Google Scholar 

  • Bonucci E (1992b) Comments on the ultrastructural morphology of the calcification process: an attempt to reconcile matrix vesicles, collagen fibrils, and crystal ghosts. Bone Miner 17:219–222

    PubMed  CAS  Google Scholar 

  • Bonucci E (1995) Ultrastructural organic-inorganic relationships in calcified tissues: cartilage and bone vs. enamel. Connect Tissue Res 33:157–162

    PubMed  CAS  Google Scholar 

  • Bonucci E (2000) Basic composition and structure of bone. In: An YH, Draughn RA (eds) Mechanical testing of bone and the bone-implant interface. CRC Press, Boca Raton, pp 3–21

    Google Scholar 

  • Bonucci E (2002) Crystal ghosts and biological mineralization: fancy spectres in an old castle, or neglected structures worthy of belief? J Bone Miner Metab 20:249–265

    PubMed  Google Scholar 

  • Bonucci E, De Santis E (1980) Ultrastructure of osteoblastoma, with particular reference to calcification and matrix vesicles. In: Donath A, Courvoisier B (eds) Bone and tumors. Medécine et Hygiène, Genève, pp 232–236

    Google Scholar 

  • Bonucci E, Gherardi G (1975) Histochemical and electron microscope investigations on medullary bone. Cell Tissue Res 163:81–97

    PubMed  CAS  Google Scholar 

  • Bonucci E, Reurink J (1978) The fine structure of decalcified cartilage and bone: a comparison between decalcification procedures performed before and after embedding. Calcif Tissue Res 25:179–190

    PubMed  CAS  Google Scholar 

  • Bonucci E, Silvestrini G (1996) Ultrastructure of the organic matrix of embryonic avian bone after en bloc reaction with various electron-dense’ stains’. Acta Anat 156:22–33

    PubMed  CAS  Google Scholar 

  • Bonucci E, Derenzini M, Marinozzi V (1973) The organic-inorganic relationship in calcified mitochondria. J Cell Biol 59:185–211

    PubMed  CAS  Google Scholar 

  • Bonucci E, Silvestrini G, Di Grezia R (1988) The ultrastructure of the organic phase associated with the inorganic substance in calcified tissues. Clin Orthop Relat Res 233:243–261

    PubMed  Google Scholar 

  • Bonucci E, Silvestrini G, Di Grezia R (1989) Histochemical properties of the “crystal ghosts” of calcifying epiphyseal cartilage. Connect Tissue Res 22:43–50

    PubMed  CAS  Google Scholar 

  • Bonucci E, Lozupone E, Silvestrini G, Favia A, Mocetti P (1994) Morphological studies of hypomineralized enamel of rat pups on calcium-deficient diet, and of its changes after return to normal diet. Anat Rec 239:379–395

    PubMed  CAS  Google Scholar 

  • Boothroyd B (1964) The problem of demineralisation in thin sections of fully calcified bone. J Cell Biol 20:165–173

    PubMed  CAS  Google Scholar 

  • Borelli G, Mayer-Gostan N, Merle PL, De Pontual H, Boeuf G, Allemand D, Payan P (2003) Composition of biomineral organic matrices with special emphasis on turbot (Psetta maxima) otolith and endolimph. Calcif Tissue Int 72:717–725

    PubMed  CAS  Google Scholar 

  • Boskey AL (1989) Noncollagenous matrix proteins and their role in mineralization. Bone Miner 6:111–123

    PubMed  CAS  Google Scholar 

  • Boskey AL (1998) Biomineralization: conflicts, challenges, and opportunities. J Cell Biochem 30/31:83–91

    Google Scholar 

  • Boskey AL, Posner AS (1976) Extraction of calcium-phospholipid-phosphate complex from bone. Calcif Tissue Res 19:273–283

    PubMed  CAS  Google Scholar 

  • Boskey AL, Posner AS (1977) The role of synthetic and bone extracted Ca-phospholipid-PO4 complexes in hydroxyapatite formation. Calcif Tissue Res 23:251–258

    PubMed  CAS  Google Scholar 

  • Boskey AL, Reddi AH (1983) Changes in lipids during matrix-induced endochondral bone formation. Calcif Tissue Int 35:549–554

    PubMed  CAS  Google Scholar 

  • Boskey AL, Posner AS, Lane JM, Goldberg MR, Cordella DM (1980) Distribution of lipids associated with mineralization in the bovine epiphyseal growth plate. Arch Biochem Biophys 199:305–311

    PubMed  CAS  Google Scholar 

  • Boskey AL, Bullough PG, Posner AS (1982) Calcium-acidic phospholipid-phosphate complexes in diseased and normal human bone. Metab Bone Dis Rel Res 4:151–156

    CAS  Google Scholar 

  • Boskey AL, Bullough PG, Vigorita V, Di Carlo E (1988) Calcium-acidic phospholipid-phosphate complexes in human hydroxyapatite-containing pathologic deposits. Am J Pathol 133:22–29

    PubMed  CAS  Google Scholar 

  • Boskey AL, Stiner D, Binderman I, Doty SB (1997) Effects of proteoglycan modification on mineral formation in a differentiating chick limb-bud mesenchymal cell culture system. J Cell Biochem 64:632–643

    PubMed  CAS  Google Scholar 

  • Bosshardt DD, Nanci A (2000) The pattern of expression of collagen determines the concentration and distribution of noncollagenous proteins along the forming root. In: Goldberg M, Boskey A, Robinson C (eds) Chemistry and biology of mineralized tissues. American Academy of Orthopaedic Surgeons, Rosemont, IL, pp 129–136

    Google Scholar 

  • Bouvier M, Couble M-L, Hartmann DJ, Gauthier JP, Magloire H (1990a) Ultrastructural and immunocytochemical study of bone-derived cells cultured in three-dimensional matrices: influence of chondroitin-4 sulphate on mineralization. Differentiation 45:128–137

    PubMed  CAS  Google Scholar 

  • Bouvier M, Joffre A, Magloire H (1990b) In vitro mineralization of a three-dimensional collagen matrix by human dental pulp cells in the presence of chondroitin sulphate. Arch Oral Biol 35:301–309

    PubMed  CAS  Google Scholar 

  • Bowness JM (1962) Calcium binding by chondroitin sulfate associated with collagen. Biochim Biophys Acta 58:134–136

    PubMed  CAS  Google Scholar 

  • Boyan BD (1985) Proteolipid-dependent calcification. In: Butler WT (ed) The chemistry and biology of mineralized tissues. Ebsco Media, Inc., Birmingham, AL, pp 125–131

    Google Scholar 

  • Boyan BD, Schwartz Z, Swain LD, Khare A (1989) Role of lipids in calcification of cartilage. Anat Rec 224:211–219

    PubMed  CAS  Google Scholar 

  • Boyan BD, Swain LD, Everett MM, Schwartz Z (1992) Mechanisms of microbial mineralization. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 129–156

    Google Scholar 

  • Boyan-Salyers BD, Boskey AL (1980) Relationship between proteolipids and calcium-phospholipid-phosphate complexes in Bacterionema matruchotii calcification. Calcif Tissue Int 30:167–174

    PubMed  CAS  Google Scholar 

  • Boyde A, Shapiro IM (1980) Energy dispersive X-ray elemental analysis of isolated epiphyseal growth plate chondrocyte fragments. Histochemistry 69:85–94

    PubMed  CAS  Google Scholar 

  • Brachvogel B, Dikschas J, Moch H, Welzel H, Hofmann KC, Pöschl E (2003) Annexin A5 is not essential for skeletal development. Mol Cell Biol 23:2907–2913

    PubMed  CAS  Google Scholar 

  • Buckwalter JA, Rosenberg LC, Ungar R (1987) Changes in proteoglycan aggregates during cartilage mineralization. Calcif Tissue Int 41:228–236

    PubMed  CAS  Google Scholar 

  • Butler WT (1984) Matrix macromolecules of bone and dentin. Collagen Rel Res 4:297–307

    CAS  Google Scholar 

  • Butler WT (2000) Noncollagenous proteins of bone and dentin: a brief overview. In: Goldberg M, Boskey A, Robinson C (eds) Chemistry and biology of mineralized tissues. American Academy of Orthopaedic Surgeons, Rosemont, IL, pp 137–141

    Google Scholar 

  • Byers S, van Rooden JC, Foster BK (1997) Structural changes in the large proteoglycan, aggrecan, in different zones of the ovine growth plate. Calcif Tissue Int 60:71–78

    PubMed  CAS  Google Scholar 

  • Cabrini RL (1961) Histochemistry of ossification. Int Rev Cytol 2:283–306

    Google Scholar 

  • Cameron DA (1963) The fine structure of bone and calcified cartilage. A critical review of the contribution of electron microscopy to the understanding of osteogenesis. Int Rev Cytol 11:283–306

    Google Scholar 

  • Campo RD (1970) Protein-polysaccharides of cartilage and bone in health and disease. Clin Orthop Relat Res 68:182–209

    PubMed  CAS  Google Scholar 

  • Campo RD (1974) Soluble and resistant proteoglycans in epiphyseal plate cartilage. Calcif Tissue Res 14:105–119

    PubMed  CAS  Google Scholar 

  • Campo RD, Dziewiatkowski DD (1963) Turnover of the organic matrix of cartilage and bone as visualized by autoradiography. J Cell Biol 18:19–29

    PubMed  CAS  Google Scholar 

  • Campo RD, Romano JE (1986) Changes in cartilage proteoglycans associated with calcification. Calcif Tissue Int 39:175–184

    PubMed  CAS  Google Scholar 

  • Carlson CS, Tulli HM, Jayo MJ, Loeser RF, Tracy RP, Mann KG, Adams MR (1993) Immunolocalization of noncollagenous bone matrix proteins in lumbar vertebrae from intact and surgically menopausal cynomolgus monkeys. J Bone Miner Res 8:71–81

    PubMed  CAS  Google Scholar 

  • Carrino DA, Dennis JE, Wu T-M, Arias JL, Fernandez MS, Rodriguez JP, Fink DJ, Heuer AH, Caplan AI (1996) The avian eggshell extracellular matrix as a model for biomineralization. Connect Tissue Res 35:325–329

    PubMed  CAS  Google Scholar 

  • Chen CC, Boskey AL (1986) The effects of proteoglycans from different cartilage types on in vitro hydroxyapatite proliferation. Calcif Tissue Int 39:324–327

    PubMed  CAS  Google Scholar 

  • Chen CC, Boskey AL, Rosenberg LC (1984) The inhibitory effect of cartilage proteoglycans on hydroxyapatite growth. Calcif Tissue Int 36:285–290

    PubMed  CAS  Google Scholar 

  • Choi CS, Kim YW (2000) A study of the correlation between organic matrices and nanocomposite materials in oyster shell formation. Biomaterials 21:213–222

    PubMed  CAS  Google Scholar 

  • Christoffersen J, Landis WJ (1991) A contribution with review to the description of mineralization of bone and other calcified tissues in vivo. Anat Rec 230:435–450

    PubMed  CAS  Google Scholar 

  • Corsi A, Xu T, Chen X-D, Boyde A, Liang J, Mankani M, Sommer B, Iozzo RV, Eichstetter I, Robey PG, Bianco P, Young MF (2002) Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers-Danlos-like changes in bone and other connective tissues. J Bone Miner Res 17:1180–1189

    PubMed  CAS  Google Scholar 

  • Cowles EA, DeRome ME, Pastizzo G, Brailey LL, Gronowicz GA (1998) Mineralization and the expression of matrix proteins during in vivo bone development. Calcif Tissue Int 62:74–82

    PubMed  CAS  Google Scholar 

  • de Bernard B, Stagni N, Colautti I, Vittur F, Bonucci E (1977) Glycosaminoglycans and endochondral calcification. Clin Orthop Relat Res 126:285–291

    PubMed  Google Scholar 

  • Dean DD, Schwartz Z, Muniz OE, Gomez R, Swain LD, Howell DS, Boyan BD (1992) Matrix vesicles are enriched in metalloproteinases that degrade proteoglycans. Calcif Tissue Int 50:342–349

    PubMed  CAS  Google Scholar 

  • Dean DD, Schwartz Z, Bonewald L, Muniz OE, Morales S, Gomez R, Brooks BP, Qiao M, Howell DS, Boyan BD (1994) Matrix vesicles produced by osteoblast-like cells in culture become significantly enriched in proteoglycan-degrading metalloproteinases after addition of β-glycerophosphate and ascorbic acid. Calcif Tissue Int 54:399–408

    PubMed  CAS  Google Scholar 

  • Decker JD (1966) An electron microscopic investigation of osteogenesis in the embryonic chick. Am J Anat 118:591–614

    PubMed  CAS  Google Scholar 

  • Deutsch D, Catalano-Sherman J, Dafni L, David S, Palmon A (1995) Enamel matrix proteins and ameloblast biology. Connect Tissue Res 32:97–107

    PubMed  CAS  Google Scholar 

  • Diekwisch TGH, Berman BJ, Gentner S, Slavkin HC (1995) Initial enamel crystals are not spatially associated with mineralized dentine. Cell Tissue Res 279:149–167

    PubMed  CAS  Google Scholar 

  • Diekwisch TG, Berman BJ, Anderton X, Gurinsky B, Ortega AJ, Satchell PG, Williams M, Arumughan C, Luan X, McIntosh JE, Yamane A, Carlson DS, Sire J-Y, Shuler CF (2002) Membranes, minerals, and proteins of developing vertebrate enamel. Microsc Res Tech 59:373–395

    PubMed  CAS  Google Scholar 

  • DiStefano V, Neuman WF, Rouser G (1953) The isolation of a phosphate ester from calcifiable cartilage. Arch Biochem Biophys 47:218–220

    PubMed  CAS  Google Scholar 

  • Dmitrovsky E, Boskey AL (1985) Calcium-acidic phospholipid-phosphate complexes in human atherosclerotic aortas. Calcif Tissue Int 37:121–125

    PubMed  CAS  Google Scholar 

  • Dong W, Warshawsky H (1995) Failure to demonstrate a protein coat on enamel crystallites by morphological means. Archs Oral Biol 40:321–330

    CAS  Google Scholar 

  • Dong W, Warshawsky H (1996) Lattice fringe continuity in the absence of crystal continuity in enamel. Adv Dent Res 10:232–237

    PubMed  CAS  Google Scholar 

  • Du C, Falini G, Fermani S, Abbott C, Moradian-Oldak J (2005) Supramolecular assembly of amelogenin nanospheres into birefringent microribbons. Science 307:1450–1454

    PubMed  CAS  Google Scholar 

  • Dziak R (1992) Role of lipids in osteogenesis: cell signaling and matrix calcification. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 59–71

    Google Scholar 

  • Dziewiatkowski DD, Majznerski LL (1985) Role of proteoglycans in endochondral ossification: inhibition of calcification. Calcif Tissue Int 37:560–564

    PubMed  CAS  Google Scholar 

  • Eanes ED (1992) Dynamics of calcium phosphate precipitation. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 1–17

    Google Scholar 

  • Eanes ED, Hailer AW (1994) Effect of ultrafilterable fragments from chondroitinase and protease-treated aggrecan on calcium phosphate precipitation in liposomal suspension. Calcif Tissue Int 55:176–179

    PubMed  CAS  Google Scholar 

  • Eastoe JE (1968) Chemical aspects of the matrix concept in calcified tissue organisation. Calcif Tissue Res 2:1–19

    PubMed  CAS  Google Scholar 

  • Ekanayake S, Hall BK (1994) Hypertrophy is not a prerequisite for type X collagen expression or mineralization of chondrocytes derived from cultured chick mandibular ectomesenchyme. Int J Dev Biol 38:683–694

    PubMed  CAS  Google Scholar 

  • Embery G, Rees S, Hall R, Rose K, Waddington R, Shellis P (1998) Calcium-and hydroxyapatite-binding properties of glucuronic acid-rich and iduronic acid-rich glycosaminoglycans and proteoglycans. Eur J Oral Sci 106:267–273

    PubMed  CAS  Google Scholar 

  • Engfeldt B, Hjerpe A (1976) Glycosaminoglycans and proteoglycans of human bone tissue at different stages of mineralization. Acta Path Microbiol Scand Sect A 84:95–106

    CAS  Google Scholar 

  • Ennever J, Creamer H (1967) Microbiological calcification: bone mineral and bacteria. Calcif Tissue Res 1:87–93

    PubMed  CAS  Google Scholar 

  • Ennever J, Vogel J, Takazoe I (1968) Calcium binding by a lipid extract of Bacterionema matruchotii. Calcif Tissue Res 2:296–298

    PubMed  CAS  Google Scholar 

  • Ennever J, Vogel JJ, Rider LJ, Boyan-Salyers B (1976) Nucleation of microbiologic calcification by proteolipid. Proc Soc Exper Biol Med 152:147–150

    CAS  Google Scholar 

  • Eppell SJ, Tong W, Katz JL, Kuhn L, Glimcher MJ (2001) Shape and size of isolated bone mineralites measured using atomic force microscopy. J Orthop Res 19:1027–1034

    PubMed  CAS  Google Scholar 

  • Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271:67–69

    Google Scholar 

  • Fearnhead RW (1979) Matrix-mineral relationships in enamel tissues. J Dent Res 58:909–916

    PubMed  CAS  Google Scholar 

  • Fernandez MS, Araya M, Arias JL (1997) Eggshells are shaped by a precise spatio-temporal arrangement of sequentially deposited macromolecules. Matrix Biol 16:13–20

    PubMed  CAS  Google Scholar 

  • Fernandez MS, Moya A, Lopez L, Arias JL (2001) Secretion pattern, ultrastructural localization and function of extracellular matrix molecules involved in eggshell formation. Matrix Biol 19:793–803

    CAS  Google Scholar 

  • Fernandez MS, Passalacqua K, Arias JI, Arias JL (2004) Partial biomimetic reconstruction of avian eggshell formation. J Struct Biol 148:1–10

    PubMed  CAS  Google Scholar 

  • Fincham AG, Moradian-Oldak J, Simmer JP (1999) The structural biology of the developing dental enamel matrix. J Struct Biol 126:270–299

    PubMed  CAS  Google Scholar 

  • Fischer JW, Steiz S, Johnson P, Burke A, Kolodgie F, Virmani R, Giachelli C, Wight TN (2004) Decorin promotes aortic smooth muscle cell calcification and colocalizes to calcified regions in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol 24:2391–2396

    PubMed  CAS  Google Scholar 

  • Frasier MB, Banks WJ, Newbrey JW (1975) Characterization of developing antler cartilage matrix I. Selected histochemical and enzymatic assessment. Calcif Tissue Res 17:273–288

    PubMed  CAS  Google Scholar 

  • Fratzl P, Fratzl-Zelman N, Klaushofer K, Vogl G, Koller K (1991) Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif Tissue Int 48:407–413

    PubMed  CAS  Google Scholar 

  • Fratzl P, Fratzl-Zelman N, Klaushofer K (1993) Collagen packing and mineralization. An X-ray scattering investigation of turkey leg tendon. Biophys J 54:260–266

    Google Scholar 

  • Freudenberg E, György P (1923) III. Der Verkalkungsvorgang bei der Entwicklung des Knochens. Ergebn inn Med 24:17–28

    CAS  Google Scholar 

  • Fu G, Valiyaveettil S, Wopenka B, Morse DE (2005) CaCO3 biomineralization: acidic 9-kDa proteins isolated from aragonitic abalone shell nacre can specifically modify calcite crystal morphology. Biomacromolecules 6:1289–1298

    PubMed  CAS  Google Scholar 

  • Fujisawa R, Kuboki Y (1991) Preferential adsorption of dentin and bone acidic proteins on the (100) face of hydroxyapatite crystals. Biochim Biophys Acta 1075:56–60

    PubMed  CAS  Google Scholar 

  • Fujisawa R, Nodasaka Y, Kuboki Y (1995) Further characterization of interaction between bone sialoprotein (BSP) and collagen. Calcif Tissue Int 56:140–144

    PubMed  CAS  Google Scholar 

  • Fukae M, Tanabe T, Yamada M (1994) Action of metalloproteinases on porcine dentin mineralization. Calcif Tissue Int 55:426–435

    PubMed  CAS  Google Scholar 

  • Genge BR, Wu LNY, Adkisson HDI, Wuthier RE (1991) Matrix vesicle annexins exhibit proteolipid-like properties. Selective partitioning into lipophilic solvents under acidic conditions. J Biol Chem 266:10678–10685

    PubMed  CAS  Google Scholar 

  • Gerstenfeld LC, Gotoh Y, McKee MD, Nanci A, Landis WJ, Glimcher MJ (1990) Expression and ultrastructural immunolocalization of a major 66 kDa phosphoprotein synthesized by chicken osteoblasts during mineralization in vitro. Anat Rec 228:93–103

    PubMed  CAS  Google Scholar 

  • Glimcher MJ (1959) Molecular biology of mineralized tissues with particular reference to bone. Rev Modern Phys 31:359–393

    CAS  Google Scholar 

  • Glimcher MJ (1976) Composition, structure, and organization of bone and other mineralized tissues and the mechanism of calcification. In: Greep RO, Astwood EB (eds) Handbook of physiology: endocrinology. American Physiological Society, Washington, pp 25–116

    Google Scholar 

  • Glimcher MJ (1989) Mechanism of calcification: role of collagen fibrils and collagen-phosphoprotein complexes in vitro and in vivo. Anat Rec 224:139–153

    PubMed  CAS  Google Scholar 

  • Glimcher MJ (1990) The nature of the mineral component of bone and the mechanism of calcification. In: Avioli LV, Krane SM (eds) Metabolic bone disease and clinically related disorders. W.B. Saunders Company, Philadelphia, pp 42–68

    Google Scholar 

  • Glimcher MJ (1992) The nature of the mineral component of bone and the mechanism of calcification. In: Coe FL, Favus MJ (eds) Disorders of bone and mineral metabolism. Raven Press, New York, pp 265–286

    Google Scholar 

  • Glimcher MJ, Krane SM (1968) The organization and structure of bone, and the mechanism of calcification. In: Gould BS (ed) Biology of collagen. Academic Press, London, pp 67–251

    Google Scholar 

  • Glimcher MJ, Brickley-Parsons D, Kossiva D (1979) Phosphopeptides and γ-carboxyglutamic acid-containing peptides in calcified turkey tendon: their absence in uncalcified tendon. Calcif Tissue Int 27:281–284

    PubMed  CAS  Google Scholar 

  • Goldberg M, Septier D, Lécolle S, Chardin H, Quintana MA, Acevedo AC, Gafni G, Dillouya D, Vermelin L, Thonemann B, Schmalz G, Bissila-Mapahou P, Carreau JP (1995) Dental mineralization. Int J Dev Biol 39:93–110

    PubMed  CAS  Google Scholar 

  • Goldberg M, Rapoport O, Septier D, Palmier K, Hall R, Embery G, Young M, Ameye L (2003) Proteoglycans in predentin: the last 15 micrometers before mineralization. Connect Tissue Res 44:184–188

    PubMed  CAS  Google Scholar 

  • Gomez S, Lopez-Cepero JM, Silvestrini G, Mocetti P, Bonucci E (1996) Matrix vesicles and focal proteoglycan aggregates are the nucleation sites revealed by the lanthanum incubation method: a correlated study on the hypertrophic zone of the rat epiphyseal cartilage. Calcif Tissue Int 58:273–282

    PubMed  CAS  Google Scholar 

  • Gotliv BA, Addadi L, Weiner S (2003) Mollusk shell acidic proteins: in search of individual functions. Chem Bio Chem 4:522–529

    PubMed  CAS  Google Scholar 

  • Groot CG (1982) Acid groups in the organic matrix of foetal bone. An electronmicroscopical study. Thesis, Rijksuniversiteit te Leiden, pp 1–95

    Google Scholar 

  • Gustafsson E, Aszodi A, Ortega N, Hunziker EB, Denker HW, Werb Z, Fassler R (2003) Role of collagen type II and perlecan in skeletal development. Ann N Y Acad Sci 995:140–150

    PubMed  CAS  Google Scholar 

  • Hargest TE, Gay CV, Schraer H, Wasserman AJ (1985) Vertical distribution of elements in cells and matrix of epiphyseal growth plate cartilage determined by quantitative electron probe analysis. J Histochem Cytochem 33:275–286

    PubMed  CAS  Google Scholar 

  • Hashimoto Y, Lester GE, Caterson B, Yamauchi M (1995) EDTA-insoluble, calcium-binding proteoglycan in bovine bone. Calcif Tissue Int 56:398–402

    PubMed  CAS  Google Scholar 

  • Hay DI, Moreno EC (1979) Differential adsorption and chemical affinities of proteins for apatitic surfaces. J Dent Res 58:930–940

    PubMed  CAS  Google Scholar 

  • Hayashi Y (1992) High resolution electron microscopy in the dentino-enamel junction. J Electron Microsc 41:387–391

    CAS  Google Scholar 

  • Herold RC (1971) Osteodentinogenesis. An ultrastructural study of tooth formation in the pike, Esox lucius. Z Zellforsch 112:1–14

    PubMed  CAS  Google Scholar 

  • Hincke MT, Tsang CPW, Courtney M, Hill V, Narbaitz R (1995) Purification and immunohistochemistry of a soluble matrix protein of the chicken eggshell (Ovocleidin 17). Calcif Tissue Int 56:578–583

    PubMed  CAS  Google Scholar 

  • Hirschman A, Dziewiatkowski DD (1966) Protein-polysaccharide loss during endochondral ossification: immunochemical evidence. Science 154:393–395

    PubMed  CAS  Google Scholar 

  • Hoshi K, Kemmotsu S, Takeuchi Y, Amizuka N, Ozawa H (1999) The primary calcification in bones follows removal of decorin and fusion of collagen fibrils. J Bone Miner Res 14:273–280

    PubMed  CAS  Google Scholar 

  • Hoshi K, Ejiri S, Ozawa H (2001a) Localizational alterations of calcium, phosphorus, and calcification-related organics such as proteoglycans and alkaline phosphatase during bone calcification. J Bone Miner Res 16:289–298

    PubMed  CAS  Google Scholar 

  • Hoshi K, Ejiri S, Ozawa H (2001b) Ultrastructural analysis of bone calcification by using energy-filtering transmission electron microscopy. It J Anat Embryol 106:141–150

    CAS  Google Scholar 

  • Hoshi K, Ejiri S, Ozawa H (2001c) Organic components of crystal sheaths in bones. J Electron Microsc (Tokyo) 50:33–40

    CAS  Google Scholar 

  • Höhling HJ (1984) Can the fine structure of the early crystal formations and of staining nuclei give information on the spatial distribution of nucleation sites at matrix molecules? INSERM 125:479–494

    Google Scholar 

  • Höhling HJ (1989) Special aspects of biomineralization of dental tissues. In: Oksche A, Vollrath L (eds) Handbook of microscopic anatomy. Springer, Berlin Heidelberg New York, pp 475–524

    Google Scholar 

  • Höhling HJ, Schöpfer H (1968) Morphological investigations of apatitic nucleation in hard tissue and salivary stone formation. Naturwissensch 55:545

    Google Scholar 

  • Höhling HJ, Schöpfer H, Neubauer G (1970) Elektronenmikroskopie und Laserbeugungs-Untersuchungen zur Charakterisierung der organischen Matrix im Speichelstein und Hartgewebe. Z Zellforsch 108:415–430

    PubMed  Google Scholar 

  • Höhling HJ, Kreilos R, Neubauer G, Boyde A (1971) Electron microscopy and electron microscopical measurements of collagen mineralization in hard tissues. Z Zellforsch 122:36–52

    PubMed  Google Scholar 

  • Höhling HJ, Barckhaus RH, Krefting ER, Schreiber J (1976) Electron microscopic microprobe analysis of mineralized collagen fibrils and extracollagenous regions in turkey leg tendon. Cell Tissue Res 175:345–350

    PubMed  Google Scholar 

  • Höhling HJ, Barckhaus RH, Krefting ER, Althoff J, Quint P, Niestadtkötter R (1981) Relationship between the Ca-phosphate crystallites and the collagen structure in turkey tibia tendon. In: Veis A (ed) The chemistry and biology of mineralized connective tissues. Elsevier North Holland, Amsterdam, pp 113–117

    Google Scholar 

  • Höhling HJ, Krefting ER, Barckhaus R (1982) Does correlation exist between mineralization in collagen-rich hard tissues and that in enamel? J Dent Res 61:1496–1503

    Google Scholar 

  • Höhling HJ, Barckhaus RH, Krefting E-R, Althoff J, Quint P (1990) Collagen mineralization: aspects of the structural relationship between collagen and the apatitic crystallites. In: Bonucci E, Motta PM (eds) Ultrastructure of skeletal tissues. Kluwer Academic Publishers, Boston, pp 41–62

    Google Scholar 

  • Höhling HJ, Arnold S, Barckhaus RH, Plate U, Wiesmann HP (1995) Structural relationship between the primary crystal formation and the matrix macro molecules in different hard tissues. Discussion of a general principle. Connect Tissue Int 33:171–178

    Google Scholar 

  • Höhling HJ, Arnold S, Plate U, Stratmann U, Wiesmann HP (1997) Analysis of general principle of crystal nucleation, formation in the different hard tissues. Adv Dent Res 11:462–466

    PubMed  Google Scholar 

  • Hunter GK (1987) An ion-exchange mechanism of cartilage calcification. Connect Tissue Res 16:111–120

    PubMed  CAS  Google Scholar 

  • Hunter GK (1991) Role of proteoglycan in the provisional calcification of cartilage. A review and reinterpretation. Clin Orthop Relat Res 262:256–280

    PubMed  Google Scholar 

  • Hunter GK (1992) In vitro studies on matrix-mediated mineralization. In: Hall BK (ed) Bone, vol 4: Bone metabolism and mineralization. CRC Press, Boca Raton, pp 225–247

    Google Scholar 

  • Hunter GK, Szigety S (1992) Effects of proteoglycan on hydroxyapatite formation under non-steady-state and pseudo-steady-state conditions. Matrix 12:362–368

    PubMed  CAS  Google Scholar 

  • Ishigaki R, Takagi M, Igarashi M, Ito K (2002) Gene expression and immunohistochemical localization of osteonectin in association with early bone formation in the developing mandible. Histochem J 34:57–66

    PubMed  CAS  Google Scholar 

  • Jacenko O, Chan D, Franklin A, Ito S, Underhill CB, Bateman JF, Campbell MR (2001) A dominant interference collagen X mutation disrupts hypertrophic chondrocyte pericellular matrix and glycosaminoglycan and proteoglycan distribution in transgenic mice. J Pathol 159:2257–2269

    CAS  Google Scholar 

  • Jodaikin A, Traub W, Weiner S (1986) Protein conformation in rat tooth enamel. Arch Oral Biol 31:685–689

    PubMed  CAS  Google Scholar 

  • Kallenbach E (1971) Electron microscopy of the differentiating rat incisor ameloblast. J Ultrastruct Res 35:508–531

    PubMed  CAS  Google Scholar 

  • Kallenbach E (1986) Crystal-associated matrix components in rat incisor enamel. An electron-microscopic study. Cell Tissue Res 246:455–461

    PubMed  CAS  Google Scholar 

  • Kallenbach E (1989) Critical comments on the article entitled “Organization of crystals in enamel” by H. Warshawsky. Anat Rec 224:263

    PubMed  CAS  Google Scholar 

  • Kallenbach E (1990) Evidence that apatite crystals of rat incisor enamel have hexagonal cross sections. Anat Rec 228:132–136

    PubMed  CAS  Google Scholar 

  • Kasugai S, Todescan R Jr, Nagata T, Yao K-L, Butler WT, Sodek J (1991) Expression of bone matrix proteins associated with mineralized tissue formation by adult rat bone marrow cells in vitro: inductive effects of dexamethasone on the osteoblastic phenotype. J Cell Physiol 147:111–120

    PubMed  CAS  Google Scholar 

  • Khan SR (1992) Structure and development of calcific urinary stones. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 345–363

    Google Scholar 

  • Kim H-M, Rey C, Glimcher MJ (1995) Isolation of calcium-phosphate crystals of bone by non-aqueous methods at low temperature. J Bone Miner Res 10:1589–1601

    PubMed  CAS  Google Scholar 

  • Kirkham J, Zhang J, Brookes SJ, Shore RC, Wood SR, Smith DA, Wallwork ML, Ryu OH, Robinson C (2000) Evidence for charge domains on developing enamel crystal surfaces. J Dent Res 79:1943–1947

    PubMed  CAS  Google Scholar 

  • Kirsch T, Claassen H (2000) Matrix vesicles mediate mineralization of human thyroid cartilage. Calcif Tissue Int 66:292–297

    PubMed  CAS  Google Scholar 

  • Kirsch T, Von der Mark H (1991) Ca2+ binding properties of type X collagen. Fed Eur Bioch Soc 294:149–152

    CAS  Google Scholar 

  • Kirsch T, Wuthier RE (1994) Stimulation of calcification of growth plate cartilage matrix vesicles by binding to type II and X collagens. J Biol Chem 269:11462–11469

    PubMed  CAS  Google Scholar 

  • Kirsch T, Ishikawa Y, Mwale F, Wuthier RE (1994) Roles of the nucleational core complex and collagens (types II and X) in calcification of growth plate cartilage matrix vesicles. J Biol Chem 269:20103–20109

    PubMed  CAS  Google Scholar 

  • Kirsch T, Harrison G, Golub EE, Nah HD (2000) The roles of annexins and types II and X collagen in matrix vesicle-mediated mineralization of growth plate cartilage. J Biol Chem 275:35577–35583

    PubMed  CAS  Google Scholar 

  • Kobayashi S (1971) Acid mucopolysaccharides in calcified tissues. Int Rev Cytol 30:257–371

    PubMed  CAS  Google Scholar 

  • Kuettner KE, Sorgente N, Croxen RL, Howell DS, Pita JC (1974) Lysozyme in preosseous cartilage VII. Evidence for physiological role of lysozyme in normal endochondral calcification. Biochim Biophys Acta 372:335–344

    CAS  Google Scholar 

  • Kwan KM, Pang MK, Zhou S, Cowan SK, Kong RY, Pfordte T, Olsen BR, Sillence DO, Tam PP, Cheah KS (1997) Abnormal compartmentalization of cartilage matrix components in mice lacking collagen X: implications for function. J Cell Biol 136:459–471

    PubMed  CAS  Google Scholar 

  • Lakshminarayanan R, Kini RM, Valiyaveettil S (2002) Investigation of the role of ansocalcin in the biomineralization in goose eggshell matrix. Proc Natl Acad Sci USA 99:5155–5159

    PubMed  CAS  Google Scholar 

  • Landis WJ, Géraudie J (1990) Organization and development of the mineral phase during early ontogenesis of the bony fin rays of the trout Oncorhynchus mykiss. Anat Rec 228:383–391

    PubMed  CAS  Google Scholar 

  • Landis WJ, Song MJ, Leith A, McEwen L, McEwen BF (1993) Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol 110:39–54

    PubMed  CAS  Google Scholar 

  • Landis WJ, Hodgens KJ, Arena J, Song MJ, McEwen BF (1996a) Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc Res Techn 33:192–202

    CAS  Google Scholar 

  • Landis WJ, Hodgens KJ, Song MJ, Arena J, Kiyonaga S, Marko M, Owen C, McEwen BF (1996b) Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. J Struct Biol 117:24–35

    PubMed  CAS  Google Scholar 

  • Lanzing WJR, Wright RG (1976) The ultrastructure and calcification of the scales of Tilapia mossambica (Peters). Cell Tissue Res 167:37–47

    PubMed  CAS  Google Scholar 

  • Lash JW, Vasan NS (1983) Glycosaminoglycans of cartilage. In: Hall BK (ed) Cartilage. Structure, function and biochemistry. Academic Press, New York, pp 215–251

    Google Scholar 

  • Leach SA (1979) Enamel matrix and crystals. J Dent Res 58:943–947

    PubMed  CAS  Google Scholar 

  • Leblond CP, Lacroix P, Ponlot R, Dhem A (1959) Les stades initiaux de l’ostéogenèse. Nouvelles données histochimique et autoradiographiques. Bull Acad Roy Med Belgique 24:421–443

    Google Scholar 

  • Lee DD, Glimcher MJ (1989) The three-dimensional spatial relationship between the collagen fibrils and the inorganic calcium-phosphate crystals of pickerel and herring fish bone. Connect Tissue Res 21:247–257

    PubMed  CAS  Google Scholar 

  • Lee DD, Glimcher MJ (1991) Three-dimensional spatial relationship between the collagen fibrils and the inorganic calcium phosphate crystals of pickerel (Americanus americanus) and herring (Clupea harengus) bone. J Mol Biol 217:487–501

    PubMed  CAS  Google Scholar 

  • Lees S (1987) Considerations regarding the structure of the mammalian mineralized osteoid from viewpoint of the generalized packing model. Connect Tissue Res 16:281–303

    PubMed  CAS  Google Scholar 

  • Lees S, Prostak K (1988) The locus of mineral crystallites in bone. Connect Tissue Res 18:41–54

    PubMed  CAS  Google Scholar 

  • Lees S, Prostak KS, Ingle VK, Kjoller K (1994) The loci of mineral in turkey leg tendon as seen by atomic force microscope and electron microscopy. Calcif Tissue Int 55:180–189

    PubMed  CAS  Google Scholar 

  • Lees S, Capel M, Hukins DWL, Mook HA (1997) Effect of sodium chloride solutions on mineralized and unmineralized turkey leg tendon. Calcif Tissue Int 61:74–76

    PubMed  CAS  Google Scholar 

  • Linde A (1984) Non-collagenous proteins and proteoglycans in dentinogenesis. In: Linde A (ed) Dentin and dentinogenesis, 2nd vol. CRC Press, Boca Raton, pp 55–92

    Google Scholar 

  • Linde A, Goldberg M (1993) Dentinogenesis. Crit Rev Oral Biol Med 4:679–728

    PubMed  CAS  Google Scholar 

  • Linde A, Lussi A, Crenshaw MA (1989) Mineral induction by immobilized polyanionic proteins. Calcif Tissue Int 44:286–295

    PubMed  CAS  Google Scholar 

  • Lohmander S, Hjerpe A (1975) Proteoglycans of mineralizing rib and epiphyseal cartilage. Biochim Biophys Acta 404:93–109

    PubMed  CAS  Google Scholar 

  • Lormée P, Septier D, Lécolle S, Baudoin C, Goldberg M (1996) Dual incorporation of (35S)sulfate into dentin proteoglycans acting as mineralization promotors in rat molars and predentin proteoglycans. Calcif Tissue Int 58:368–375

    PubMed  Google Scholar 

  • MacDougall M, Nydegger J, Gu TT, Simmons D, Luan X, Cavender A, D’Souza RN (1998) Developmental regulation of dentin sialophosphoprotein during ameloblast differentiation: a potential enamel matrix nucleator. Connect Tissue Res 39:329–341

    CAS  Google Scholar 

  • Mann S (1988) Molecular recognition in biomineralization. Nature 332:119–124

    CAS  Google Scholar 

  • Mann S (1993) Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365:499–505

    CAS  Google Scholar 

  • Marsh ME (1994) Polyanion-mediated mineralization-assembly and reorganization of acidic polysaccharides in the Golgi system of a coccolithophorid alga during mineral deposition. Protoplasma 177:108–122

    CAS  Google Scholar 

  • Matsui Y, Alini M, Webber C, Poole AR (1991) Characterization of aggregating proteoglycans from the proliferative, maturing, hypertrophic, and calcifying zones of the cartilaginous physis. J Bone Joint Surg 73-A:1064–1074

    Google Scholar 

  • Matukas VJ, Krikos GA (1968) Evidence for changes in protein polysaccharide associated with the onset of calcification in cartilage. J Cell Biol 39:43–48

    PubMed  CAS  Google Scholar 

  • Mayne R, von der Mark K (1983) Collagens of cartilage. In: Hall BK (ed) Cartilage. Structure, function and biochemistry. Academic Press, New York, pp 181–214

    Google Scholar 

  • Miake Y, Aoba T, Moreno EC, Shimoda S, Prostak K, Suga S (1991) Ultrastructural studies on crystal growth of enameloid minerals in Elasmobranch and Teleost fish. Calcif Tissue Int 48:204–217

    Google Scholar 

  • Mitchell N, Shepard N, Harrod J (1982) The measurement of proteoglycan in the mineralizing region of the rat growth plate. An electronmicroscopic and X-ray microanalytical study. J Bone Joint Surg 64-A:32–38

    Google Scholar 

  • Moradian-Oldak J (2001) Amelogenins: assembly, processing and control of crystal morphology. Matrix Biol 20:293–305

    PubMed  CAS  Google Scholar 

  • Moradian-Oldak J, Weiner S, Addadi L, Landis WJ, Traub W (1991) Electron imaging and diffraction study of individual crystals of bone, mineralized tendon and synthetic carbonate apatite. Connect Tissue Res 25:219–228

    PubMed  CAS  Google Scholar 

  • Moradian-Oldak J, Frolow F, Addadi L, Weiner S (1992) Interactions between acidic matrix macromolecules and calcium phosphate ester crystals: relevance to carbonate apatite formation in biomineralization. Proc R Soc London B Biol Sci 247:47–55

    CAS  Google Scholar 

  • Mwale F, Tchetina E, Wu CW, Poole AR (2002) The assembly and remodeling of the extra-cellular matrix in the growth plate in relationship to mineral deposition and cellular hypertrophy: an in situ study of collagens II and IX and proteoglycan. J Bone Miner Res 17:275–283

    PubMed  CAS  Google Scholar 

  • Nakamura H, Hirata A, Tsuji T, Yamamoto T (2001) Immunolocalization of keratan sulfate proteoglycan in rat calvaria. Arch Histol Cytol 64:109–118

    PubMed  CAS  Google Scholar 

  • Nanci A (1999) Content and distribution of noncollagenous matrix proteins in bone and cementum: relationship to speed of formation and collagen packing density. J Struct Biol 126:256–269

    PubMed  CAS  Google Scholar 

  • Nanci A, Smith CE (1992) Development and calcification of enamel. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 313–343

    Google Scholar 

  • Nanci A, Bai P, Warshawsky H (1983) The effect of osmium postfixation and uranyl and lead staining on the ultrastructure of young enamel in the rat incisor. Anat Rec 207:1–16

    PubMed  CAS  Google Scholar 

  • Nefussi JR, Brami G, Modrowski D, Oboeuf M, Forest N (1997) Sequential expression of bone matrix proteins during rat calvaria osteoblast differentiation and bone nodule formation in vitro. J Histochem Cytochem 45:493–503

    PubMed  CAS  Google Scholar 

  • Olson OP, Watabe N (1980) Studies on formation and resorption of fish scales. IV: Ultrastructure of developing scales in newly hatched fry of the sheepshead minnow, Cyprinodon variegatus (Atheriniformes: Cyprinodontidae). Cell Tissue Res 211:303–316

    PubMed  CAS  Google Scholar 

  • Onozato H, Watabe N (1979) Studies on fish scale formation and resorption III. Fine structure and calcification of the fibrillary plates of the scales in Carassius auratus (Cypriniformes: cyprinidae). Cell Tissue Res 201:409–422

    PubMed  CAS  Google Scholar 

  • Parisuthiman D, Mochida Y, Duarte WR, Yamauchi M (2005) Biglycan modulates osteoblast differentiation and matrix mineralization. J Bone Miner Res 20:1878–1886

    PubMed  CAS  Google Scholar 

  • Paschalis EP, Jacenko O, Olsen B, Mendelsohn R, Boskey AL (1996a) FT-IR microscopic analysis identified alterations in mineral properties in bones from mice transgenic for type X collagen. Bone 18:151–156

    Google Scholar 

  • Paschalis EP, Jacenko O, Olsen B, de Crombrugghe B, Boskey AL (1996b) The role of type X collagen in endochondral ossification as deduced by Fourier transform infrared microscopy analysis. Connect Tissue Res 35:371–377

    PubMed  CAS  Google Scholar 

  • Pidaparti RMV, Chandran A, Takano Y, Turner CH (1996) Bone mineral lies mainly outside collagen fibrils: prediction of a composite model for osteonal bone. J Biomechanics 29:909–916

    CAS  Google Scholar 

  • Pita JC, Cuervo LA, Madruga JE, Muller FJ, Howell DS (1970) Evidence for a role of protein-polysaccharides in regulation of mineral phase separation in calcifying cartilage. J Clin Invest 49:2188–2197

    PubMed  CAS  Google Scholar 

  • Plate U, Tkotz T, Wiesmann HP, Stratmann U, Joos U, Höhling HJ (1996) Early mineralization of matrix vesicles in the epiphyseal growth plate. J Microsc 183:102–107

    PubMed  CAS  Google Scholar 

  • Plate U, Arnold S, Stratmann U, Wiesmann H-P, Höhling HJ (1998) General principle of ordered apatitic crystal formation in enamel and collagen rich hard tissues. Connect Tissue Res 38:149–157

    PubMed  CAS  Google Scholar 

  • Politi Y, Arad T, Klein E, Weiner S, Addadi L (2004) Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306:1161–1164

    PubMed  CAS  Google Scholar 

  • Poole AR (1991) The growth plate: cellular physiology, cartilage assembly and mineralization. In: Hall B, Newman S (eds) Cartilage: molecular aspects. CRC Press, Boca Raton, pp 179–211

    Google Scholar 

  • Poole AR, Pidoux I, Rosenberg L (1982) Role of proteoglycans in endochondral ossification: immunofluorescent localization of link protein and proteoglycan monomer in bovine fetal epiphyseal growth plate. J Cell Biol 92:249–260

    PubMed  CAS  Google Scholar 

  • Poole AR, Matsui Y, Hinek A, Lee ER (1989) Cartilage macromolecules and the calcification of cartilage matrix. Anat Rec 224:167–179

    PubMed  CAS  Google Scholar 

  • Posner AS (1987) Bone mineral and the mineralization process. In: Peck WA (ed) Bone and mineral research/5. Elsevier Science Publisher, Amsterdam, pp 65–116

    Google Scholar 

  • Prince CW, Rahemtulla F, Butler WT (1983) Metabolism of rat bone proteoglycans in vivo. Biochem J 216:589–596

    PubMed  CAS  Google Scholar 

  • Prince CW, Rahemtulla F, Butler WT (1984) Incorporation of [35S]sulphate into glycosaminoglycans by mineralized tissues in vivo. Biochem J 224:941–945

    PubMed  CAS  Google Scholar 

  • Pugliarello MC, Vittur F, de Bernard B, Bonucci E, Ascenzi A (1970) Chemical modifications in osteones during calcification. Calcif Tissue Res 5:108–114

    PubMed  CAS  Google Scholar 

  • Qin C, Baba O, Butler WT (2004) Post-translational modifications of SIBLING proteins and their roles in osteogenesis and dentinogenesis. Crit Rev Oral Biol Med 15:126–136

    PubMed  CAS  Google Scholar 

  • Raggio CL, Boyan BD, Boskey AL (1986) In vivo hydroxyapatite formation induced by lipids. J Bone Miner Res 1:409–415

    PubMed  CAS  Google Scholar 

  • Razzouk S, Brunn JC, Qin C, Tye CE, Goldberg HA, Butler WT (2002) Osteopontin post-translational modifications, possibly phosphorylation, are required for in vitro bone resorption but not osteoclast adhesion. Bone 30:40–47

    PubMed  CAS  Google Scholar 

  • Rees SG, Shellis RP, Embery G (2002) Inhibition of hydroxyapatite crystal growth by bone proteoglycans and proteoglycan components. Biochem Biophys Res Commun 292:727–733

    PubMed  CAS  Google Scholar 

  • Ritchie HH, Berry JE, Somerman MJ, Hanks CT, Bronckers ALJJ, Hotton D, Papagerakis P, Berdal A, Butler WT (1997) Dentin sialoprotein (DSP) transcripts: developmentally-sustained expression in odontoblasts and transient expression in pre-ameloblasts. Eur J Oral Sci 105:405–413

    PubMed  CAS  Google Scholar 

  • Robey PG (1996) Vertebrate mineralized matrix proteins: structure and function. Connect Tissue Res 35:131–136

    PubMed  CAS  Google Scholar 

  • Robinson C, Brookes SJ, Shore RC, Kirkham J (1998) The developing enamel matrix: nature and function. Eur J Oral Sci 106:282–291

    PubMed  CAS  Google Scholar 

  • Robison R, Rosenheim AH (1934) Calcification of hypertrophic cartilage in vitro. Biochem J 28:684–698

    PubMed  CAS  Google Scholar 

  • Rosati R, Horan GS, Pinero GJ, Garofalo S, Keene DR, Horton WA, Vuorio E, de Crombrugghe B, Behringer RR (1994) Normal long bone growth and development in type X collagennull mice. Nature Genet 8:129–135

    PubMed  CAS  Google Scholar 

  • Saito T, Arsenault AL, Yamauchi M, Kuboki Y, Crenshaw MA (1997) Mineral induction by immobilized phosphoproteins. Bone 21:305–311

    PubMed  CAS  Google Scholar 

  • Saito T, Yamauchi M, Crenshaw MA (1998) Apatite induction by insoluble dentin collagen. J Bone Miner Res 13:265–270

    PubMed  CAS  Google Scholar 

  • Salih E, Wang J, Mah J, Fluckiger R (2002) Natural variation in the extent of phosphorylation of bone phosphoproteins as a function of in vivo new bone formation induced by demineralized bone matrix in soft tissue and bony environments. Biochem J 364:465–474

    PubMed  CAS  Google Scholar 

  • Sarig S (2004) Aspartic acid nucleates the apatite crystallites of bone: a hypothesis. Bone 35:108–113

    PubMed  CAS  Google Scholar 

  • Sasano Y, Zhu JX, Kamakura S, Kusunoki S, Mizoguchi I, Kagayama M (2000) Expression of major bone extracellular matrix proteins during embryonic osteogenesis in rat mandibles. Anat Embryol (Berl) 202:31–37

    PubMed  CAS  Google Scholar 

  • Satoyoshi M, Koizumi T, Teranaka T, Iwamoto T, Takita H, Kuboki Y, Saito S, Mikuni-Takagaki Y (1995) Extracellular processing of dentin matrix protein in the mineralizing odontoblast culture. Calcif Tissue Int 57:237–241

    PubMed  CAS  Google Scholar 

  • Scherft JP, Moskalewski S (1984) The amount of proteoglycans in cartilage matrix and the onset of mineralization. Metab Bone Dis Rel Res 5:195–203

    CAS  Google Scholar 

  • Schönbörner AA, Boivin G, Baud CA (1979) The mineralization processes in teleost fish scales. Cell Tissue Res 202:203–212

    PubMed  Google Scholar 

  • Schubert M, Pras M (1968) Ground substance protein-polysaccharides and the precipitation of calcium phosphate. Clin Orthop Relat Res 60:235–255

    PubMed  CAS  Google Scholar 

  • Shepard N (1992) Role of proteoglycans in calcification. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 41–58

    Google Scholar 

  • Shepard N, Mitchell N (1981) Acridine orange stabilization of glycosaminoglycans in beginning endochondral ossification. A comparative light and electron microscopic study. Histochemistry 70:107–114

    PubMed  CAS  Google Scholar 

  • Sikes CS, Wheeler AP, Wierzbicki A, Dillaman RM, De Luca L (1998) Oyster shell protein and atomic force microscopy of oyster shell folia. Biol Bull 194:304–316

    CAS  Google Scholar 

  • Silbermann M, Frommer J (1973) Dynamic changes in acid mucopolysaccharides during mineralization of the mandibular condylar cartilage. Histochemie 36:185–192

    PubMed  CAS  Google Scholar 

  • Smales FC (1975) Structural subunit in prisms of immature rat enamel. Nature 258:772–774

    PubMed  CAS  Google Scholar 

  • Sobel AE (1955) Local factors in the mechanism of calcification. Ann NY Acad Sci 60:713–731

    PubMed  CAS  Google Scholar 

  • Sobel AE, Burger M (1954) Calcification XIV. Investigation of the role of chondroit in sulfate in the calcifying mechanism. Proc Soc Exper Biol Med 87:7–13

    CAS  Google Scholar 

  • Sommer B, Bickel M, Hofstetter W, Wetterwald A (1996) Expression of matrix proteins during the development of mineralized tissues. Bone 19:371–380

    PubMed  CAS  Google Scholar 

  • Stratmann U, Schaarschmidt K, Wiesmann HP, Plate U, Höhling HJ (1996) Mineralization during matrix-vesicle-mediated mantle dentine formation in molars of albino rats: a microanalytical and ultrastructural study. Cell Tissue Res 284:223–230

    PubMed  CAS  Google Scholar 

  • Su X, Sun K, Cui FZ, Landis WJ (2003) Organization of apatite crystals in human woven bone. Bone 32:150–162

    PubMed  CAS  Google Scholar 

  • Sugars RV, Milan AM, Brown JO, Waddington RJ, Hall RC, Embery G (2003) Molecular interaction of recombinant decorin and biglycan with type I collagen influences crystal growth. Connect Tissue Res 44:189–195

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Kubota T, Koizumi T, Satoyoshi M, Teranaka T, Kawase T, Ikeda T, Yamaguchi A, Saito S, Mikuni-Takagaki Y (1996) Extracellular processing of bone and dentin proteins in matrix mineralization. Connect Tissue Res 35:223–229

    PubMed  CAS  Google Scholar 

  • Takagi M (1990) Ultrastructural cytochemistry of cartilage proteoglycans and their relation to the calcification process. In: Bonucci E, Motta PM (eds) Ultrastructure of skeletal tissues. Kluwer Academic Publishers, Boston, pp 111–127

    Google Scholar 

  • Takagi M, Parmley RT, Denys FR (1981) Ultrastructural localization of complex carbohydrates in odontoblasts, predentin, and dentin. J Histochem Cytochem 29:747–758

    PubMed  CAS  Google Scholar 

  • Takagi M, Parmley RT, Denys FR (1983) Ultrastructural cytochemistry and immunocytochemistry of proteoglycans associated with epiphyseal cartilage calcification. J Histochem Cytochem 31:1089–1100

    PubMed  CAS  Google Scholar 

  • Takagi M, Parmley RT, Denys FR, Yagasaki H, Toda Y (1984) Ultrastructural cytochemistry of proteoglycans associated with calcification of shark cartilage. Anat Rec 208:149–158

    PubMed  CAS  Google Scholar 

  • Takazoe I, Vogel J, Ennever J (1970) Calcium hydroxyapatite nucleation by lipid extract of Bacterionema matruchotii. J Dent Res 49:395–398

    PubMed  CAS  Google Scholar 

  • Termine JD (1985) The tissue specific proteins of the bone matrix. In: Butler WT (ed) The chemistry and biology of mineralized tissues. EBSCO Media, Birmingham, AL, pp 94–97

    Google Scholar 

  • Tohda H, Yamada M, Yamaguchi Y, Yanagisawa T (1997) High-resolution electron microscopical observations of initial enamel crystals. J Electron Microsc 46:97–101

    Google Scholar 

  • Tong W, Glimcher MJ, Katz JL, Kuhn L, Eppell SJ (2003) Size and shape of mineralites in young bovine bone measured by atomic force microscopy. Calcif Tissue Int 72:592–598

    PubMed  CAS  Google Scholar 

  • Traub W, Jodaikin A, Weiner S (1985) Diffraction studies of enamel protein-mineral structural relations. In: Butler WT (ed) The chemistry and biology of mineralized tissues. Ebsco Media, Inc., Birmingham, pp 221–225

    Google Scholar 

  • Traub W, Arad T, Weiner S (1992a) Origin of mineral crystal growth in collagen fibrils. Matrix 12:251–255

    PubMed  CAS  Google Scholar 

  • Traub W, Jodaikin A, Arad T, Veis A, Sabsay B (1992b) Dentin phosphophoryn binding to collagen fibrils. Matrix 12:197–201

    PubMed  CAS  Google Scholar 

  • Travis DF (1968) Comparative ultrastructure and organization of inorganic crystals and organic matrices of mineralized tissues. Biology of the mouth. American Association for the Advancement of Sciences, Washington, pp 237–297

    Google Scholar 

  • Travis DF, Gonsalves M (1969) Comparative ultrastructure and organization of the prismatic region of two bivalves and its possible relation to the chemical mechanism of boring. Am Zoolog 9:635–661

    Google Scholar 

  • Tsukamoto D, Sarashina I, Endo K (2004) Structure and expression of an unusually acidic matrix protein of pearl oyster shells. Biochem Biophys Res Commun 320:1175–1180

    PubMed  CAS  Google Scholar 

  • Van Dijk S, Dean DD, Liu Y, Zhao Y, Chirgwin JM, Schwartz Z, Boyan BD (1998) Purification, amino acid sequence, and cDNA sequence of a novel calcium-precipitating proteolipid involved in calcification of Corynebacterium matruchotii. Calcif Tissue Int 62:350–358

    PubMed  Google Scholar 

  • Veis A (1993) Mineral-matrix interactions in bone and dentin. J Bone Miner Res 8:S493–S497

    PubMed  Google Scholar 

  • Veis A (2003) Mineralization in organic matrix frameworks. Rev Mineral Geochem 54:249–289

    CAS  Google Scholar 

  • Veis A, Perry A (1967) The phosphoprotein of the dentin matrix, Biochemistry 6:2409–2416

    PubMed  CAS  Google Scholar 

  • Vittur F, Zanetti M, Stagni N, de Bernard B (1979) Further evidence for the participation of glycoproteins to the process of calcification. Perspect Inherit Metab Dis 2:13–30

    CAS  Google Scholar 

  • Vogel JJ, Ennever J (1971) The role of a lipoprotein in the intracellular hydroxyapatite formation in Bacterionema matruchotii. Clin Orthop Relat Res 78:218–222

    PubMed  CAS  Google Scholar 

  • Vogel JJ, Smith WN (1976) Calcification of membranes isolated from Bacterionema matruchotii. J Dent Res 55:1080–1083

    PubMed  CAS  Google Scholar 

  • Vogel JJ, Boyan-Salyers BD (1976) Acidic lipids associated with the local mechanism of calcification. A review. Clin Orthop Relat Res 118:230–241

    CAS  Google Scholar 

  • von der Mark K, Mollenhauer J (1997) Annexin V interactions with collagen. Cell Mol Life Sci 53:539–545

    PubMed  Google Scholar 

  • Waddington RJ, Hall RC, Embery G, Lloyd DM (2003) Changing profiles of proteoglycans in the transition of predentine to dentine. Matrix Biol 22:153–161

    PubMed  CAS  Google Scholar 

  • Wallwork ML, Kirkham J, Chen H, Chang SX, Robinson C, Smith DA, Clarkson BH (2002) Binding of dentin noncollagenous matrix proteins to biological mineral crystals: an atomic force microscopy study. Calcif Tissue Int 71:249–255

    PubMed  CAS  Google Scholar 

  • Wang A, Martin JA, Lembke LA, Midura RJ (2000) Reversible suppression of in vitro biomineralization by activation of protein kinase A. J Biol Chem 275:11082–11091

    PubMed  CAS  Google Scholar 

  • Warshawsky H (1987) External shape of enamel crystals. Scanning Microsc 1:1913–1923

    PubMed  CAS  Google Scholar 

  • Warshawsky H (1989) Organization of crystals in enamel. Anat Rec 224:242–262

    PubMed  CAS  Google Scholar 

  • Weiner S (1979) Aspartic acid-rich proteins: major components of the soluble organicmatrix of mollusk shells. Calcif Tissue Int 29:163–167

    PubMed  CAS  Google Scholar 

  • Weiner S, Addadi L (1991) Acidic macromolecules of mineralized tissues: the controllers of crystal formation. Trends Biochem Sci 16:252–256

    PubMed  CAS  Google Scholar 

  • Weiner S, Hood L (1975) Soluble protein of the organic matrix of mollusk shells: a potential template for shell formation. Science 190:987–989

    PubMed  CAS  Google Scholar 

  • Weiner S, Price PA (1986) Disaggregation of bone into crystals. Calcif Tissue Int 39:365–375

    PubMed  CAS  Google Scholar 

  • Weiner S, Traub W (1980) X-ray diffraction study of the insoluble organic matrix of mollusk shells. FEBS Lett 111:311–316

    CAS  Google Scholar 

  • Weiner S, Traub W (1984) Macromolecules in mollusc shells and their function in biomineralization. Phil Trans R Soc London 304 B:425–434

    Google Scholar 

  • Weiner S, Traub W (1986) Organization of hydroxyapatite crystals within collagen fibrils. Feder Eur Bioch Soc 206:262–266

    CAS  Google Scholar 

  • Weiner S, Talmon Y, Traub W (1983) Electron diffraction of mollusk shell organic matrices and their relationship to the mineral phase. Int J Biol Macromol 5:325–328

    CAS  Google Scholar 

  • Weiner S, Levi-Kalisman Y, Raz S, Addadi L (2003) Biologically formed amorphous calcium carbonate. Connect Tissue Res 44:214–218

    PubMed  CAS  Google Scholar 

  • Weiner S, Sagi I, Addadi L (2005) Choosing the crystallization path less traveled. Science 309:1027–1028

    PubMed  CAS  Google Scholar 

  • Weiss IM, Tuross N, Addadi L, Weiner S (2002) Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. J Exp Zool 293:478–491

    PubMed  CAS  Google Scholar 

  • Wheeler AP (1992) Mechanisms of molluscan shell formation. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 179–216

    Google Scholar 

  • Wheeler AP, Rusenko KW, George JW, Sikes CS (1987) Evaluation of calcium binding by molluscan shell organic matrix and its relevance to biomineralization. Comp Biochem Physiol 87B:953–960

    CAS  Google Scholar 

  • Wierzbicki A, Sikes CS, Madura JD, Drake B (1994) Atomic force microscopy and molecular modeling of protein and peptide binding to calcite. Calcif Tissue Int 54:133–141

    PubMed  CAS  Google Scholar 

  • Woodward C, Davidson EA (1968) Structure-function relationships of protein polysaccharide complexes: specific ion-binding properties. Proc Natl Acad Sci 60:201–205

    PubMed  CAS  Google Scholar 

  • Wu LNY, Genge BR, Lloyd GC, Wuthier RE (1991) Collagen-binding proteins in collagenasereleased matrix vesicles from cartilage. J Biol Chem 266:1195–1203

    PubMed  CAS  Google Scholar 

  • Wu Y, Ackerman JL, Strawich ES, Kim KM, Glimcher MJ (2003) Phosphate ions in bone: identification of a calcium-organic phosphate complex by 31P solid-state NMR spectroscopy at early stage of mineralization. Calcif Tissue Int 72:610–626

    PubMed  CAS  Google Scholar 

  • Xu T, Bianco P, Fisher LW, Longenecker G, Smith E, Goldstein S, Bonadio J, Boskey A, Heegaard A-M, Sommer B, Satomura K, Dominguez P, Zhao C, Kulkarni AB, Gehron Robey P, Young MF (1998) Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nature Genet 20:78–82

    PubMed  CAS  Google Scholar 

  • Yamada J, Watabe N (1979) Studies on fish scale formation and resorption I. Fine structure and calcification of the scales in Fundulus heteroclitus (Atheriniformes: cyprinodontidae). J Morphol 159:49–66

    Google Scholar 

  • Yang L, Zhang X, Liao Z, Guo Y, Hu Z, Cao Y (2003) Interfacial molecular recognition between polysaccharides and calcium carbonate during crystallization. J Inorg Biochem 97:377–383

    PubMed  CAS  Google Scholar 

  • Zeichner-David M (2001) Is there more to enamel matrix proteins than biomineralization? Matrix Biol 20:307–316

    PubMed  CAS  Google Scholar 

  • Zhu J-X, Sasano Y, Takahashi I, Mizoguchi I, Kagayama M (2001) Temporal and spatial gene expression of major bone extracellular matrix molecules during embryonic mandibular osteogenesis in rats. Histochem J 33:25–35

    PubMed  CAS  Google Scholar 

  • Ziv V, Weiner S (1994) Bone crystal sizes: a comparison of transmission electron microscopic and X-ray diffraction line width broadening techniques. Connect Tissue Res 30:165–175

    PubMed  CAS  Google Scholar 

  • Zylberberg L, Géraudie J, Meunier F, Sire J-Y (1992) Biomineralization in the integumental skeleton of the living lower vertebrates. In: Hall BK (ed) Bone, volume 4: Bone metabolism and mineralization. CRC Press, Boca Raton, pp 171–224

    Google Scholar 

  • Zylberberg L, Nicolas G (1982) Ultrastructure of scales in a teleost (Carassius auratus L.) after use of rapid freez-fixation and freeze-substitution. Cell Tissue Res 223:349–367

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Main Suggested Calcification Mechanisms: Extracellular Matrix. In: Biological Calcification. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36013-1_18

Download citation

Publish with us

Policies and ethics