Skip to main content

The Organic-inorganic Relationships in Calcifying Matrices

  • Chapter
Biological Calcification
  • 715 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaron JE, Oliver B, Clarke N, Carter DH (1999) Calcified microspheres as biological entities and their isolation from bone. Histochem J 31:455–470

    PubMed  CAS  Google Scholar 

  • Addadi L, Weiner S (1985) Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Natl Acad Sci USA 82:4110–4114

    PubMed  CAS  Google Scholar 

  • Aizenberg J, Hanson J, Ilan M, Leiserowitz L, Koetzle TF, Addadi L, Weiner S (1995) Morphogenesis of calcitic sponge spicules: a role for specialized proteins interacting with growing crystals. FASEB J 9:262–268

    PubMed  CAS  Google Scholar 

  • Aizenberg J, Lambert G, Addadi L, Weiner S (1996) Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates. Adv Mater 8:222–226

    CAS  Google Scholar 

  • Albeck S, Aizenberg J, Addadi L, Weiner S (1993) Interactions of various skeletal intracrystalline components with calcite crystals. J Am Chem Soc 115:11691–11697

    CAS  Google Scholar 

  • Albeck S, Addadi L, Weiner S (1996) Regulation of calcite crystal morphology by intracrystalline acidic proteins and glycoproteins. Connect Tissue Res 35:365–370

    PubMed  CAS  Google Scholar 

  • Allemand D, Bénazet-Tambutté S (1996) Dynamics of calcification in the Mediterranean red coral, Corallium rubrum (Linnaeus) (Cnidaria, Octocorallia). J Exp Zool 276:270–278

    Google Scholar 

  • Ameye L, Compère P, Dille J, Dubois P (1998) Ultrastructure and cytochemistry of the early calcification site and of its mineralization organic matrix in Paracentrotus lividus (Echinodermata: Echinoidea). Histochem Cell Biol 110:285–294

    PubMed  CAS  Google Scholar 

  • Ameye L, Hermann R, Killian C, Wilt F, Dubois P (1999) Ultrastructural localization of proteins involved in sea urchin biomineralization. J Histochem Cytochem 47:1189–1200

    PubMed  CAS  Google Scholar 

  • Amprino R, Engström A (1952) Studies on X ray absorption and diffraction of bone tissue. Acta Anat 15:1–22

    PubMed  CAS  Google Scholar 

  • Angevine JM, Kappas A, DeGowin RL, Spargo BH (1962) Renal tubular nuclear inclusions of lead poisoning. Arch Path 73:486–494

    PubMed  CAS  Google Scholar 

  • Appleton J (1971) Ultrastructural observations on the inorganic/organic relationships in early cartilage calcification. Calcif Tissue Res 7:307–317

    PubMed  CAS  Google Scholar 

  • Appleton J, Blackwood HJJ (1969) Ultrastructural observations on early mineralization in cartilage. J Bone Joint Surg 51-B:385

    Google Scholar 

  • Arias JL, Carrino DA, Fernandez MS, Rodriguez JP, Dennis JE, Caplan AI (1992) Partial biochemical and immunochemical characterization of avian eggshell extracellular matrices. Arch Biochem Biophys 298:293–302

    PubMed  CAS  Google Scholar 

  • Arias JL, Fink DJ, Xiao S-Q, Heuer AH, Caplan AI (1993) Biomineralization and eggshells: cell-mediated acellular compartments of mineralized extracellular matrix. Int Rev Cytol 145:217–250

    PubMed  CAS  Google Scholar 

  • Arsenault AL (1988) Crystal-collagen relationships in calcified turkey leg tendons visualized by selected-area dark field electron microscopy. Calcif Tissue Int 43:202–212

    PubMed  CAS  Google Scholar 

  • Arsenault AL (1989) A comparative electron microscopic study of apatite crystals in collagen fibrils of rat bone, dentin and calcified turkey leg tendons. Bone Miner 6:165–177

    PubMed  CAS  Google Scholar 

  • Arsenault AL (1990) The ultrastructure of calcified tissues: methods and technical problems. In: Bonucci E, Motta PM (eds) Ultrastructure of skeletal tissues. Kluwer Academic Publishers, Boston, pp 1–18

    Google Scholar 

  • Arsenault AL (1991) Image analysis of collagen-associated mineral distribution in cryogenically prepared turkey leg tendons. Calcif Tissue Int 48:56–62

    PubMed  CAS  Google Scholar 

  • Arsenault AL, Ottensmeyer FP, Heath IB (1988) An electron microscopic and spectroscopic study of murine epiphyseal cartilage: analysis of fine structure and matrix vesicles preserved by slam freezing and freeze substitution. J Ultrastruct Mol Struct Res 98:32–47

    PubMed  CAS  Google Scholar 

  • Ascenzi A, Benedetti EL (1959) An electron microscopic study of the foetal membranous ossification. Acta Anat 37:370–385

    PubMed  CAS  Google Scholar 

  • Ascenzi A, Bonucci E (1964) A quantitative investigation of the birefringence of the osteon. Acta Anat 44:236–262

    Google Scholar 

  • Ascenzi A, François C, Steve Bocciarelli D (1963) On the bone induced by estrogen in birds. J Ultrastruct Res 8:491–505

    PubMed  CAS  Google Scholar 

  • Ascenzi A, Bonucci E, Steve Bocciarelli D (1965) An electron microscope study of osteon calcification. J Ultrastruct Res 12:287–303

    PubMed  CAS  Google Scholar 

  • Ascenzi A, Bonucci E, Ripamonti A. Roveri N (1978) X-ray diffraction and electron microscope study of osteons during calcification. Calcif Tissue Res 25:133–143

    PubMed  CAS  Google Scholar 

  • Ayukawa Y, Takeshita F, Inoue T, Yoshinari M, Shimono M, Suetsugu T, Tanaka T (1998) An immunoelectron microscopic localization of noncollagenous bone proteins (osteocalcin and osteopontin) at the bone-titanium interface of rat tibiae. J Biomed Mater Res 41:111–119

    PubMed  CAS  Google Scholar 

  • Bai P, Warshawsky H (1985) Morphological studies on the distribution of enamel matrix proteins using routine electron microscopy and freeze-fracture replicas in the rat incisor. Anat Rec 212:1–16

    PubMed  CAS  Google Scholar 

  • Beaver DL (1961) The ultrastructure of the kidney in lead intoxication with particular reference to intranuclear inclusions. Am J Pathol 39:195–208

    PubMed  CAS  Google Scholar 

  • Benson NC, Benson SC, Wilt F (1989) Immunogold detection of glycoprotein antigens in sea urchin embryos. Am J Anat 185:177–182

    PubMed  CAS  Google Scholar 

  • Benson SC, Wilt FH (1992) Calcification of spicules in the sea urchin embryo. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 157–178

    Google Scholar 

  • Benson S, Jones EM, Crise-Benson N, Wilt F (1983) Morphology of the organic matrix of the spicule of the sea urchin larva. Exp Cell Res 148:249–253

    PubMed  CAS  Google Scholar 

  • Benson SC, Benson NC, Wilt F (1986) The organic matrix of the skeletal spicule of sea urchin embryos. J Cell Biol 102:1878–1886

    PubMed  CAS  Google Scholar 

  • Berman A, Addadi L, Weiner S (1988) Interactions of sea-urchin skeleton macromolecules with growing calcite crystals-a study of intracrystalline proteins. Nature 331:546–548

    CAS  Google Scholar 

  • Berman A, Addadi L, Kvick Å, Leiserowitz L, Nelson M, Weiner S (1990) Intercalation of sea urchin proteins in calcite: study of a crystalline composite material. Science 250:664–667

    CAS  Google Scholar 

  • Bernard GW, Pease DC (1969) An electron microscopic study of initial intramembranous osteogenesis. Am J Anat 125:271–290

    PubMed  CAS  Google Scholar 

  • Bianco P, Riminucci M, Silvestrini G, Bonucci E, Termine JD, Fisher LW, Gehron-Robey P (1993) Localization of bone sialoprotein (BSP) to Golgi and post-Golgi secretory structures in osteoblasts and to discrete sites in early bone matrix. J Histochem Cytochem 41:193–203

    PubMed  CAS  Google Scholar 

  • Bigi A, Ripamonti A, Koch MHJ, Roveri N (1988) Calcified turkey leg tendon as structural model for bone mineralization. Int J Biol Macromol 10:282–286

    CAS  Google Scholar 

  • Bigi A, Foresti E, Gregorini R, Ripamonti A, Roveri N, Shah JS (1992) The role of magnesium on the structure of biological apatites. Calcif Tissue Int 50:439–444

    PubMed  CAS  Google Scholar 

  • Bigi A, Gandolfi M, Koch MHJ, Roveri N (1996) X-ray diffraction study of in vitro calcification of tendon collagen. Biomaterials 17:1195–1201

    PubMed  CAS  Google Scholar 

  • Bigi A, Gandolfi M, Roveri N, Valdré G (1997) In vitro calcified tendon collagen: an atomic force and scanning electron microscopy investigation. Biomaterials 18:657–665

    PubMed  CAS  Google Scholar 

  • Bishop MA, Warshawsky H (1982) Electron microscopic studies on the potential loss of crystallites from routinely processed sections of young enamel in the rat incisor. Anat Record 202:177–186

    CAS  Google Scholar 

  • Blumen G, Merzel J (1972) The decrease in the concentration of organic material in the course of formation of the enamel matrix. Experientia 28:545–548

    PubMed  CAS  Google Scholar 

  • Boevé ER, Ketelaars GA, Vermeij M, Cao LC, Schröder FH, de Bruijn WC (1993) An ultrastructural study of experimentally induced microliths in rat proximal and distal tubules. J Urol 149:893–899

    PubMed  Google Scholar 

  • Bonucci E (1967) Fine structure of early cartilage calcification. J Ultrastruct Res 20:33–50

    PubMed  CAS  Google Scholar 

  • Bonucci E (1969) Further investigation on the organic/inorganic relationships in calcifying cartilage. Calcif Tissue Res 3:38–54

    PubMed  CAS  Google Scholar 

  • Bonucci E (1971) The locus of initial calcification in cartilage and bone. Clin Orthop Relat Res 78:108–139

    PubMed  CAS  Google Scholar 

  • Bonucci E (1984) The structural basis of calcification. In: Ruggeri A, Motta PM (eds.) Ultrastructure of the connective tissue matrix. Martinus Nijhoff Publishing, Boston, pp 165–191

    Google Scholar 

  • Bonucci E (1992) Role of collagen fibrils in calcification. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 19–39

    Google Scholar 

  • Bonucci E (1995) Ultrastructural organic-inorganic relationships in calcified tissues: cartilage and bone vs. enamel. Connect Tissue Res 33:157–162

    PubMed  CAS  Google Scholar 

  • Bonucci E (2002) Crystal ghosts and biological mineralization: fancy spectres in an old castle, or neglected structures worthy of belief? J Bone Miner Metab 20:249–265

    PubMed  Google Scholar 

  • Bonucci E, Gherardi G (1975) Histochemical and electron microscope investigations on medullary bone. Cell Tissue Res 163:81–97

    PubMed  CAS  Google Scholar 

  • Bonucci E, Reurink J (1978) The fine structure of decalcified cartilage and bone: a comparison between decalcification procedures performed before and after embedding. Calcif Tissue Res 25:179–190

    PubMed  CAS  Google Scholar 

  • Bonucci E, Silvestrini G (1988) Ultrastructural studies in experimental lead intoxication. Contrib Nephrol 64:93–101

    PubMed  CAS  Google Scholar 

  • Bonucci E, Silvestrini G (1992) Immunohistochemical investigation on the presence of chondroitin sulfate in calcification nodules of epiphyseal cartilage. Eur J Histochem 36:407–422

    PubMed  CAS  Google Scholar 

  • Bonucci E, Silvestrini G (1994) Morphological investigation of epiphyseal cartilage after glutaraldehyde-malachite green fixation. Bone 15:153–160

    PubMed  CAS  Google Scholar 

  • Bonucci E, Silvestrini G (1996) Ultrastructure of the organic matrix of embryonic avian bone after en bloc reaction with various electron-dense’ stains’. Acta Anat 156:22–33

    PubMed  CAS  Google Scholar 

  • Bonucci E, Derenzini M, Marinozzi V (1973) The organic-inorganic relationship in calcified mitochondria. J Cell Biol 59:185–211

    PubMed  CAS  Google Scholar 

  • Bonucci E, Barckhaus RH, Silvestrini G, Ballanti P, Di Lorenzo G (1983) Osteoclast changes induced by lead poisoning (saturnism). Appl Pathol 1:241–250

    PubMed  CAS  Google Scholar 

  • Bonucci E, Bianco P, Hayashi Y, Termine JD (1986) Ultrastructural immunohistochemical localization of noncollagenous proteins in bone, cartilage and developing enamel. In: Ali SY (ed) Cell mediated calcification and matrix vesicles. Excerpta Medica, Amsterdam, pp 33–38

    Google Scholar 

  • Bonucci E, Silvestrini G, Di Grezia R (1988) The ultrastructure of the organic phase associated with the inorganic substance in calcified tissues. Clin Orthop Relat Res 233:243–261

    PubMed  Google Scholar 

  • Bonucci E, Silvestrini G, Di Grezia R (1989) Histochemical properties of the “crystal ghosts” of calcifying epiphyseal cartilage. Connect Tissue Res 22:43–50

    PubMed  CAS  Google Scholar 

  • Bonucci E, Lozupone E, Silvestrini G, Favia A, Mocetti P (1994) Morphological studies of hypomineralized enamel of rat pups on calcium-deficient diet, and of its changes after return to normal diet. Anat Rec 239:379–395

    PubMed  CAS  Google Scholar 

  • Bonucci E, Silvestrini G, Mocetti P (1997) MC22-33F monoclonal antibody shows unmasked polar head groups of choline-containing phospholipids in cartilage and bone. Eur J Histochem 41:177–190

    PubMed  CAS  Google Scholar 

  • Bosshardt DD, Zalzal S, McKee MD, Nanci A (1998) Developmental appearance and distribution of bone sialoprotein and osteopontin in human and rat cementum. Anat Rec 250:1–21

    Google Scholar 

  • Bronckers ALJJ, Lyaruu DM, Bervoets TJM, Wöltgens JHM (1988) Autoradiographic, ultrastructural and biosynthetic study of the effect of colchicine on enamel matrix secretion and enamel mineralization in hamster tooth germs in vitro. Archs Oral Biol 33:7–16

    CAS  Google Scholar 

  • Butler WT (1984b) Dentin collagen: chemical structure and role in mineralization. In: Linde A (ed) Dentin and dentinogenesis, 2nd vol. CRC Press, Boca Raton, pp 37–54

    Google Scholar 

  • Butler WT (1984a) Matrix macromolecules of bone and dentin. Collagen Rel Res 4:297–307

    CAS  Google Scholar 

  • Butler WT, Brunn JC, Qin C (2003) Dentin extracellular matrix (ECM) proteins: comparison to bone ECM and contribution to dynamics of dentinogenesis. Connect Tissue Res 44:171–178

    PubMed  CAS  Google Scholar 

  • Caglioti V (1935) Sulla struttura delle ossa. Atti V Congr. Naz. Chimica Pura Applicata, Rome, Associazione Italiana di Chimica, pp 320–331

    Google Scholar 

  • Caglioti V, Ascenzi A, Scrocco M (1954) Infrared spectrometric research on the relation between ossein and inorganic bone fraction. Experientia 10:371

    CAS  Google Scholar 

  • Cameron DA (1963) The fine structure of bone and calcified cartilage. A critical review of the contribution of electron microscopy to the understanding of osteogenesis. Int Rev Cytol 11:283–306

    Google Scholar 

  • Campo RD, Phillips J (1973) Electron microscopic visualization of proteoglycans and collagen in bovine costal cartilage. Calcif Tissue Res 13:83–92

    PubMed  CAS  Google Scholar 

  • Carlström D, Finean JB (1954) X-ray diffraction studies on the ultrastructure of bone. Biochim Biophys Acta 13:183–191

    PubMed  Google Scholar 

  • Caron C, Xue J, Sun X, Simmer JP, Bartlett JD (2001) Gelatinase A (MMP-2) in devoping tooth tissues and amelogenin hydrolysis. J Dent Res 80:1660–1664

    PubMed  CAS  Google Scholar 

  • Carrino DA, Dennis JE, Wu T-M, Arias JL, Fernandez MS, Rodriguez JP, Fink DJ, Heuer AH, Caplan AI (1996) The avian eggshell extracellular matrix as a model for biomineralization. Connect Tissue Res 35:325–329

    PubMed  CAS  Google Scholar 

  • Chan CS, De Stasio G, Welch SA, Girasole M, Frazer BH, Nesterova MV, Fakra S, Banfield JF (2004) Microbial polysaccharides template assembly of nanocrystal fibers. Science 303:1656–1658

    PubMed  CAS  Google Scholar 

  • Chardin H, Septier D, Goldberg M (1990a) Visualization of glycosaminoglycans in rat incisor predentin and dentin with cetylpyridinium chloride-glutaraldehyde as fixative. J Histochem Cytochem 38:885–894

    PubMed  CAS  Google Scholar 

  • Chardin H, Londono I, Goldberg M (1990b) Visualization of glycosaminoglycans in rat incisor extracellular matrix using a hyaluronidase-gold complex. Histochem J 22:588–594

    PubMed  CAS  Google Scholar 

  • Chen J, McKee MD, Nanci A, Sodek J (1994) Bone sialoprotein mRNA expression and ultrastructural localization in fetal porcine calvarial bone: comparisons with osteopontin. Histochem J 26:67–78

    PubMed  CAS  Google Scholar 

  • Cho JW, Partin JS, Lennarz WJ (1996) A technique for detecting matrix proteins in the crystalline spicule of the sea urchin embryo. Proc Natl Acad Sci USA 93:1282–1286

    PubMed  CAS  Google Scholar 

  • Choi CS, Kim YW (2000) A study of the correlation between organic matrices and nanocomposite materials in oyster shell formation. Biomaterials 21:213–222

    PubMed  CAS  Google Scholar 

  • Choie DD, Richter GW, Young LB (1975) Biogenesis of intranuclear lead-protein inclusions in mouse kidney. Beitr Path 155:197–203

    CAS  Google Scholar 

  • Crenshaw MA (1972) The soluble matrix fromMercenaria mercenaria shell. Biomineralization 6:6–11

    CAS  Google Scholar 

  • Crenshaw MA, Ristedt H (1976) The histochemical localization of reactive groups in septal nacre from Nautilus pompilius L. In: Watabe N, Wilbur KM (eds) The mechanisms of mineralization in the invertebrates and plants. University of South Carolina Press, Columbia, SC, pp 355–367

    Google Scholar 

  • Dauphin Y (2002) Comparison of the soluble matrices of the calcitic prismatic layer of Pinna nobilis (Mollusca, Bivalvia, Pteriomorpha). Comp Biochem Physiol A Mol Integr Physiol 132:577–590

    PubMed  CAS  Google Scholar 

  • Davis WL, Jones RG, Hagler HK (1981) An electron microscopic histochemical and analytical X-ray microprobe study of calcification in Bruch’s membrane from human eyes. J Histochem Cytochem 29:601–608

    PubMed  CAS  Google Scholar 

  • Davis WL, Jone RG, Knight JP, Hagler HK (1982a) An electron microscopic histochemical and X-ray microprobe study of spherites in a mussel. Tissue Cell 14:61–67

    PubMed  CAS  Google Scholar 

  • Davis WL, Jones RG, Knight JP, Hagler HK (1982b) Cartilage calcification: an ultrastructural, histochemical, and analytical X-ray microprobe study of the zone of calcification in normal avian epiphyseal growth plate. J Histochem Cytochem 30:221–234

    PubMed  CAS  Google Scholar 

  • Decker G, Lennarz WJ (1988) Skeletogenesis in the sea urchin embryo. Development 103:231–247

    PubMed  CAS  Google Scholar 

  • Decker GL, Morrill JB, Lennarz WJ (1987) Characterization of sea urchin primary mesenchyme cells and spicules during biomineralization in vitro. Development 101:297–312

    PubMed  CAS  Google Scholar 

  • Decker JD (1966) An electron microscopic investigation of osteogenesis in the embryonic chick. Am J Anat 118:591–614

    PubMed  CAS  Google Scholar 

  • Decker JD (1973) Fixation effects on the fine structure of enamel crystal-matrix relationships. J Ultrastruct Res 44:58–74

    PubMed  CAS  Google Scholar 

  • Dennis JE, Xiao S-Q, Agarwal M, Fink DJ, Heuer AH, Caplan AI (1996) Microstructure of matrix and mineral components of eggshells from white leghorn chickens (Gallus gallus). J Morphol 228:287–306

    CAS  Google Scholar 

  • Diekwisch TGH, Berman BJ, Gentner S, Slavkin HC (1995) Initial enamel crystals are not spatially associated with mineralized dentine. Cell Tissue Res 279:149–167

    PubMed  CAS  Google Scholar 

  • Doyle IR, Ryall RL, Marshall VR (1991) Inclusion of proteins into calcium oxalate crystals precipitated from human urine: a highly selective phenomenon. Clin Chem 37:1589–1594

    PubMed  CAS  Google Scholar 

  • Ecarot-Charrier B, Shepard N, Charette G, Grynpas M, Glorieux FH (1988) Mineralization in osteoblast cultures: a light and electron microscopic study. Bone 9:147–154

    PubMed  CAS  Google Scholar 

  • Emlet RB (1982) Echinoderm calcite: a mechanical analysis from larval spicules. Biol Bull 163:264–275

    Google Scholar 

  • Fernandez MS, Araya M, Arias JL (1997) Eggshells are shaped by a precise spatio-temporal arrangement of sequentially deposited macromolecules. Matrix Biol 16:13–20

    PubMed  CAS  Google Scholar 

  • Fernandez MS, Moya A, Lopez L, Arias JL (2001) Secretion pattern, ultrastructural localization and function of extracellular matrix molecules involved in eggshell formation. Matrix Biol 19:793–803

    CAS  Google Scholar 

  • Fernandez MS, Escobar C, Lavelin I, Pines M, Arias JL (2003) Localization of osteopontin in oviduct tissue and eggshell during different stages of the avian egg laying cycle. J Struct Biol 143:171–180

    PubMed  CAS  Google Scholar 

  • Fernández-Morán H, Engström A (1957) Electron microscopy and X-ray diffraction of bone. Biochim Biophys Acta 23:260–264

    PubMed  Google Scholar 

  • Finean JB, Engström A (1953) The low-angle scatter of X-rays from bone tissue. Biochim Biophys Acta 11:178–189

    PubMed  CAS  Google Scholar 

  • Frank RM (1979) Tooth enamel: current state of the art. J Dent Res 58:684–693

    PubMed  CAS  Google Scholar 

  • Fukae M, Tanabe T (1998) Degradation of enamel matrix proteins in porcine secretory enamel. Connect Tissue Res 39:123–129

    PubMed  CAS  Google Scholar 

  • Garant PR (1970) An electron microscopic study of the crystal-matrix relationship in the teeth of the dogfish Squalus acanthias L. J Ultrastruct Res 30:441–449

    PubMed  CAS  Google Scholar 

  • Gautron J, Hincke MT, Mann K, Panhéleux M, Bain M, McKee MD, Solomon SE, Nys Y (2001) Ovocalyxin-32, a novel chicken eggshell matrix protein. Isolation, amino acid sequencing, cloning, and immunocytochemical localization. J Biol Chem 276:39243–39252

    PubMed  CAS  Google Scholar 

  • Gerstenfeld LC, Gotoh Y, McKee MD, Nanci A, Landis WJ, Glimcher MJ (1990) Expression and ultrastructural immunolocalization of a major 66 kDa phosphoprotein synthesized by chicken osteoblasts during mineralization in vitro. Anat Rec 228:93–103

    PubMed  CAS  Google Scholar 

  • Ghadially FN, Lalonde J-MA, Oryschak AF (1976) Electron probe X-ray analysis of siderosomes in the rabbit haemarthrotic synovial membrane. Virchows Arch B Cell Path 22:135–142

    CAS  Google Scholar 

  • Glimcher MJ (1959) Molecular biology of mineralized tissues with particular reference to bone. Rev Modern Phys 31:359–393

    CAS  Google Scholar 

  • Glimcher MJ (1976) Composition, structure, and organization of bone and other mineralized tissues and the mechanism of calcification. In: Greep RO, Astwood EB (eds) Handbook of Physiology: Endocrinology. American Physiological Society, Washington, pp 25–116

    Google Scholar 

  • Glimcher MJ (1979) Phosphopeptides of enamel matrix. J Dent Res 58:790–806

    PubMed  CAS  Google Scholar 

  • Glimcher MJ, Krane SM (1968) The organization and structure of bone, and the mechanism of calcification. In: Gould BS (ed) Biology of collagen. Academic Press, London, pp 67–251

    Google Scholar 

  • Glimcher MJ, Brickley-Parsons D, Levine PT (1977) Studies of enamel proteins during maturation. Calcif Tissue Res 24:259–270

    PubMed  CAS  Google Scholar 

  • Goldberg HA, Hunter GK, Mundy MA, Warner KJ, McKee MD (2000) Nature of hydroxyapatite crystals formed in the presence of bone sialoprotein, osteopontin and synthetic homopolymer analogues. In: Goldberg M, Boskey A, Robinson C (eds) Chemistry and biology of mineralized tissues. American Academy of Orthopaedic Surgeons, Rosemont, IL, pp 225–228

    Google Scholar 

  • Goldberg M, Noblot MM, Septier D (1980) Effets de deux méthodes de démineralisation sur la préservation des glycoprotéines et des protéoglycanes dans les dentines intercanaliculaires et péricanaliculaires chez le cheval. J Biol Buccale 8:315–330

    PubMed  CAS  Google Scholar 

  • Goldberg M, Vermelin L, Mostermans P, Lécolle S, Septier D, Godeau G, LeGeros RZ (1998) Fragmentation of the distal portion of Tomes’ processes of secretory ameloblasts in the forming enamel of rat incisors. Connect Tissue Res 38:159–169

    CAS  Google Scholar 

  • Gorski JP (1998) Is all bone the same? Distinctive distributions and properties of noncollagenous matrix proteins in lamellar vs. woven bone imply the existence of different underlying osteogenic mechanisms. Crit Rev Oral Biol Med 9:201–223

    PubMed  CAS  Google Scholar 

  • Gorski JP, Griffin D, Dudley G, Stanford C, Thomas R, Huang C, Lai EL, Karr B, Solursh M (1990) Bone acidic glycoprotein-75 is amajor synthetic product of osteoblastic cells and localized as 75-and/or 50-kDa forms in mineralized phases of bone and growth plate and in serum. J Biol Chem 265:14956–14963

    PubMed  CAS  Google Scholar 

  • Gorski JP, Wang A, Lovitch D, Law D, Powell K, Midura RJ (2004) Extracellular bone acidic glycoprotein-75 defines condensed mesenchyme regions to be mineralized and localizes with bone sialoprotein during intramembranous bone formation. J Biol Chem 279:25455–25463

    PubMed  CAS  Google Scholar 

  • Goyer RA, May P, Cates MM, Krigman MR (1970) Lead and protein content of isolated intranuclear inclusion bodies from kidneys of lead-poisoned rats. Lab Invest 22:245–251

    PubMed  CAS  Google Scholar 

  • Grégoire C (1957) Topography of the organic components in mother-of-pearl. J Biophys Biochem Cytol 3:797–806

    PubMed  Google Scholar 

  • Groot CG (1982a) An electron microscopic examination for the presence of acid groups in the organic matrix of mineralization nodules in foetal bone. Metab Bone Dis Rel Res 4:77–84

    CAS  Google Scholar 

  • Groot CG (1982b) Acid groups in the organic matrix of foetal bone. An electron microscopical study. Thesis, Rijksuniversiteit te Leiden, pp 1–95

    Google Scholar 

  • Groot CG, Danes JK, Blok J, Hoogendijk A, Hauschka PV (1986) Light and electron microscopic demonstration of osteocalcin antigenicity in embryonic and adult rat bone. Bone 7:379–385

    PubMed  CAS  Google Scholar 

  • Hagiwara H (1992) Immunoelectron microscopic study of proteoglycans in rat epiphyseal growth plate cartilage after fixation with ruthenium hexamine trichloride (RHT). Histochemistry 98:305–309

    PubMed  CAS  Google Scholar 

  • Hancox NM, Boothroyd B (1965) Electron microscopy of the early stages of osteogenesis. Clin Orthop Relat Res 40:153–161

    PubMed  CAS  Google Scholar 

  • Harkey MA, Klueg K, Sheppard P, Raff RA (1995) Structure, expression, and extracellular targeting of PM27, a skeletal protein associated specifically with growth of the sea urchin larval spicule. Dev Biol 168:549–566

    PubMed  CAS  Google Scholar 

  • Hascall GK (1980) Cartilage proteoglycans: comparison of sectioned and spread whole molecoles. J Ultrastruct Res 70:369–375

    PubMed  CAS  Google Scholar 

  • Hayashi Y (1985) Ultrastructural characterization of extracellular matrix vesicles in the mineralizing fronts of apical cementum in cats. Arch Oral Biol 30:445–449

    PubMed  CAS  Google Scholar 

  • Hayashi Y (1988) Ultrastructural demonstration of the carbohydrate in developing mantle dentine with soybean agglutinin-gold complexes. J Electron Microsc 37:150–154

    Google Scholar 

  • Hayashi Y (1989) Ultrastructural demonstration of the carbohydrate in developing rat enamel using soybean agglutinin-gold complexes. Arch Oral Biol 34:517–522

    PubMed  CAS  Google Scholar 

  • Hayashi Y, Bianco P, Shimokawa H, Termine JD, Bonucci E (1986) Organic-inorganic relationships, and immunohistochemical localization of amelogenins and enamelins in developing enamel. Basic Appl Histochem 30:291–299

    PubMed  CAS  Google Scholar 

  • Hayashi Y, Nagasawa H (1990) Matrix vesicles isolated from apical pulp of rat incisors: crystal formation in low Ca x Pi ion-product medium containing β-glycerophosphate. Calcif Tissue Int 47:365–372

    PubMed  CAS  Google Scholar 

  • Hayashi Y, Imai M, Goto Y, Murakami N (1993) Pathological mineralization in a serially passaged cell line from rat pulp. J Oral Pathol Med 22:175–179

    PubMed  CAS  Google Scholar 

  • Herold RC (1971) Osteodentinogenesis. An ultrastructural study of tooth formation in the pike, Esox lucius. Z Zellforsch 112:1–14

    PubMed  CAS  Google Scholar 

  • Heywood BR, Sparks NH, Shellis RP, Weiner S, Mann S (1990) Ultrastructure, morphology and crystal growth of biogenic and synthetic apatites. Connect Tissue Res 25:103–119

    PubMed  CAS  Google Scholar 

  • Hincke MT, Gautron J, Tsang CPW, McKee MD, Nys Y (1999) Molecular cloning and ultrastructural localization of the core protein of an eggshell matrix proteoglycan, ovocleidin-116. J Biol Chem 274:32915–32923

    PubMed  CAS  Google Scholar 

  • Höhling HJ, Arnold S, Barckhaus RH, Plate U, Wiesmann HP (1995) Structural relationship between the primary crystal formation and the matrix macromolecules in different hard tissues. Discussion of a general principle. Connect Tissue Int 33:171–178

    Google Scholar 

  • Höhling HJ, Barckhaus RH, Krefting E-R, Althoff J, Quint P (1990) Collagen mineralization: aspects of the structural relationship between collagen and the apatitic crystallites. In: Bonucci E, Motta PM (eds) Ultrastructure of skeletal tissues. Kluwer Academic Publishers, Boston, pp 41–62

    Google Scholar 

  • Hoshi K, Ejiri S, Ozawa H (2001a) Organic components of crystal sheaths in bones. J Electron Microsc (Tokyo) 50:33–40

    CAS  Google Scholar 

  • Hoshi K, Ejiri S, Ozawa H (2001b) Localizational alterations of calcium, phosphorus, and calcification-related organics such as proteoglycans and alkaline phosphatase during bone calcification. J Bone Miner Res 16:289–298

    PubMed  CAS  Google Scholar 

  • Hsu FS, Krook L, Shively JN, Duncan JR, Pond WG (1973) Lead inclusion bodies in osteoclasts. Science 181:447–448

    PubMed  CAS  Google Scholar 

  • Hunziker EB, Schenk RK (1984) Cartilage ultrastructure after high pressure freezing, freeze substitution, and low temperature embedding. II. Intercellular matrix ultrastructure — preservation of proteoglycans in their native state. J Cell Biol 98:277–282

    PubMed  CAS  Google Scholar 

  • Hunziker EB, Schenk RK (1987) Structural organization of proteoglycans in cartilage. In: Wight TN, Mecham P (eds) Biology of proteoglycans. Academic Press, Orlando (FL), pp 155–185

    Google Scholar 

  • Inage T (1975) Electron microscopic study of early formation of the tooth enameloid of a fish (Hoplognathus fasciatus). I. Odontoblasts and matrix fibers. Arch Histol Jpn 38:209–227

    PubMed  CAS  Google Scholar 

  • Inage T, Shimokawa H, Teranishi Y, Iwase T, Toda Y, Moro I (1989) Immunocytochemical demonstration of amelogenins and enamelins secreted by ameloblasts during the secretory and maturation stages. Arch Histol Cytol 52:213–229

    PubMed  CAS  Google Scholar 

  • Ingersoll EP, McDonald KL, Wilt FH (2003) Ultrastructural localization of spicule matrix proteins in normal and metalloproteinase inhibitor-treated sea urchin primary mesenchymal cells. J Exp Zoolog Part A Comp Exp Biol 300:101–112

    PubMed  Google Scholar 

  • Irie K, Zalzal S, Ozawa H, McKee MD, Nanci A (1998) Morphological and immunocytochemical characterization of primary osteogenic cell cultures derived from fetal rat cranial tissue. Anat Rec 252:554–567

    PubMed  CAS  Google Scholar 

  • Jodaikin A, Traub W, Weiner S (1986) Protein conformation in rat tooth enamel. Arch Oral Biol 31:685–689

    PubMed  CAS  Google Scholar 

  • Kagami A, Takagi M, Hirama M, Sagami Y, Shimada T (1990) Enhanced ultrastructural preservation of cartilage proteoglycans in the extended state. J Histochem Cytochem 38:901–906

    PubMed  CAS  Google Scholar 

  • Kallenbach E (1986) Crystal-associated matrix components in rat incisor enamel. An electron-microscopic study. Cell Tissue Res 246:455–461

    PubMed  CAS  Google Scholar 

  • Kemp NE (1985) Ameloblastic secretion and calcification of the enamel layer in shark teeth. J Morphol 184:215–230

    PubMed  CAS  Google Scholar 

  • Kemp NE, Park JH (1974) Ultrastructure of the enamel layer in developing teeth of the shark Carcharhinus menisorrah. Arch Oral Biol 19:633–644

    PubMed  CAS  Google Scholar 

  • Khan SR (1992) Structure and development of calcific urinary stones. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 345–363

    Google Scholar 

  • Khan SR, Hackett RL (1984) Microstructure of decalcified human calcium oxalate urinary stones. Scanning Electron Microsc Pt. 2:935–941

    Google Scholar 

  • Khan SR, Hackett RL (1987) Crystal-matrix relationships in experimentally induced urinary calcium oxalate monohydrate crystals, an ultrastructural study. Calcif Tissue Int 41:157–163

    PubMed  CAS  Google Scholar 

  • Khan SR, Hackett RL (1993) Role of organic matrix in urinary stone formation: an ultrastructural study of crystal matrix interface of calcium oxalate monohydrate stones. J Urol 150:239–245

    PubMed  CAS  Google Scholar 

  • Khan SR, Atmani F, Glenton P, Hou Z-C, Talham DR, Khurshid M (1996) Lipids and membranes in the organic matrix of urinary calcific crystals and stones. Calcif Tissue Int 59:357–365

    PubMed  CAS  Google Scholar 

  • Khan SR, Glenton PA, Backov R, Talham DR (2002) Presence of lipids in urine, crystals and stones: implications for the formation of kidney stones. Kidney Int 62:2062–2072

    PubMed  CAS  Google Scholar 

  • Killian CE, Wilt FH (1996) Characterization of the proteins comprising the integral matrix of Strongylocentrotus purpuratus embryonic spicules. J Biol Chem 271:9150–9159

    PubMed  CAS  Google Scholar 

  • Kingsley RJ, Watabe N (1982) Ultrastructural investigation of spicule formation in the gorgonian Leptogorgia virgulata (Lamarck) (Coelenterata: Gorgonacea). Cell Tissue Res 223:325–334

    PubMed  CAS  Google Scholar 

  • Kitajima T, Urakami H (2000) Differential distribution of spicule matrix proteins in the sea urchin embryo skeleton. Dev Growth Differ 42:295–306

    PubMed  CAS  Google Scholar 

  • Kitajima T, Tomita M, Killian CE, Akasaka K, Wilt FH (1996) Expression of spicule matrix protein gene SM30 in embryonic and adult mineralized tissues of sea urchin Hemicentrotus pulcherrimus. Dev Growth Differ 38:687–695

    PubMed  CAS  Google Scholar 

  • Kobayashi S, Yamada J, Maekawa K, Ouchi K (1972) Calcification and nucleation in fish-scales. Biomineralization 6:84–90

    CAS  Google Scholar 

  • Kuhar KJ, Eisenmann DR (1978) Fluoride-induced mineralization within vacuoles in maturative ameloblasts of the rat. Anat Rec 191:91–102

    PubMed  CAS  Google Scholar 

  • Lalonde J-MA, Ghadially FN (1981) Aurosomes produced by sodium chloroaurate. Pathology 13:29–36

    PubMed  CAS  Google Scholar 

  • Lambert G (1998) Spicule formation in the solitary ascidian Bathypera feminalba (ascidiacea, pyuridae). Invertebrate Biol 117:341–349

    Google Scholar 

  • Lambert G, Lambert CC (1996) Spicule formation in the New Zealand ascidian Pyura pachydermatina (chordata, ascidiacea). Connect Tissue Res 34:263–269

    PubMed  CAS  Google Scholar 

  • Landis WJ, Géraudie J (1990) Organization and development of the mineral phase during early ontogenesis of the bony fin rays of the trout Oncorhynchus mykiss. Anat Rec 228:383–391

    PubMed  CAS  Google Scholar 

  • Landis WJ, Song MJ (1991) Earlymineral deposition in calcifying tendons characterized by high voltage electron microscopy and three-dimensional graphic imaging. J Struct Biol 107:116–127

    PubMed  CAS  Google Scholar 

  • Landis WJ, Paine MC, Glimcher MJ (1977) Electron microscopic observations of bone tissue prepared anhydrously in organic solvents. J Ultrastruct Res 59:1–30

    PubMed  CAS  Google Scholar 

  • Landis WJ, Moradian-Oldak J, Weiner S (1991) Topographic imaging of mineral and collagen in the calcifying turkey tendon. Connect Tissue Res 25:181–196

    PubMed  CAS  Google Scholar 

  • Landis WJ, Hodgens KJ, Arena J, Song MJ, McEwen BF (1996) Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc Res Techn 33:192–202

    CAS  Google Scholar 

  • Lanzing WJR, Wright RG (1976) The ultrastructure and calcification of the scales of Tilapia mossambica (Peters). Cell Tissue Res 167:37–47

    PubMed  CAS  Google Scholar 

  • Lee DD, Glimcher MJ (1989) The three-dimensional spatial relationship between the collagen fibrils and the inorganic calcium-phosphate crystals of pickerel and herring fish bone. Connect Tissue Res 21:247–257

    PubMed  CAS  Google Scholar 

  • Lee ER, Smith CE, Poole AR (1996) Ultrastructural localization of the C-propeptide released from type II procollagen in fetal bovine growth plate cartilage. J Histochem Cytochem 44:433–443

    PubMed  CAS  Google Scholar 

  • Lee I, Ono Y, Lee A, Omiya K, Moriya Y, Takagi M (1998) Immunocytochemical localization and biochemical characterization of large proteoglycans in developing rat bone. J Oral Sci 40:77–87

    PubMed  CAS  Google Scholar 

  • Lees S, Prostak KS, Ingle VK, Kjoller K (1994) The loci of mineral in turkey leg tendon as seen by atomic force microscope and electron microscopy. Calcif Tissue Int 55:180–189

    PubMed  CAS  Google Scholar 

  • Leng C-G, Yu Y, Ueda H, Terada N, Fujii Y, Ohno S (1998) The ultrastructure of anionic sites in rat articular cartilage as revealed by different preparation methods and polyethyleneimine staining. Histochem J 30:253–261

    PubMed  CAS  Google Scholar 

  • Linde A, Bhown M, Butler WT (1980) Noncollagenous proteins of dentin. A re-examination of proteins from rat incisor dentin utilizing techniques to avoid artifacts. J Biol Chem 255:5931–5942

    PubMed  CAS  Google Scholar 

  • Maekawa K, Yamada J (1970) Some histochemical and fine structural aspects of growing scales of the rainbow trout. Bull Fac Fish Hokkaido Univ 21:70–78

    Google Scholar 

  • Marsh ME, Sass RL (1981) Matrix-mineral relationships in the scallop hinge ligament. J Ultrastruct Res 76:57–70

    PubMed  CAS  Google Scholar 

  • Marsh M, Hamilton G, Sass R (1978) The crystal sheaths from bivalve hinge ligaments. Calcif Tissue Res 25:45–51

    PubMed  CAS  Google Scholar 

  • Marsh ME, Chang D-K, King GC (1992) Isolation and characterization of a novel acidic polysaccharide containing tartrate and glyoxylate residues from the mineralized scales of a unicellular coccolithophorid alga Pleurochrysis carterae. J Biol Chem 267:20507–20512

    PubMed  CAS  Google Scholar 

  • Martin-De Las Heras S, Valenzuela A, Overall CM (2000) The matrix metalloproteinase gelatinase A in human dentine. Arch Oral Biol 45:757–765

    PubMed  CAS  Google Scholar 

  • McKee MD, Nanci A (1995) Postembedding colloidal-gold immunocytochemistry of noncollagenous extracellular matrix proteins in mineralized tissues. Microsc Res Techn 31:44–62

    CAS  Google Scholar 

  • McKee MD, Nanci A (1996) Osteopontin at mineralized tissue interfaces in bone, teeth, and osseointegrated implants: ultrastructural distribution, and implications for mineralized tissue formation, turnover, and repair. Microsc Res Techn 33:141–164

    CAS  Google Scholar 

  • McKee MD, Nanci A, Landis WJ, Gerstenfeld LC, Gotoh Y, Glimcher MJ (1989) Ultrastructural immunolocalization of amajor phosphoprotein in embryonic chick bone. Connect Tissue Res 21:21–29

    PubMed  CAS  Google Scholar 

  • McKee MD, Nanci A, Landis WJ, Gotoh Y, Gerstenfeld LC, Glimcher MJ (1990) Developmental appearance and ultrastructural immunolocalization of a major 66kDa phosphoprotein in embryonic and post-natal chicken bone. Anat Rec 228:77–92

    PubMed  CAS  Google Scholar 

  • McKee MD, Glimcher MJ, Nanci A (1992) High-resolution immunolocalization of osteopontin and osteocalcin in bone and cartilage during endochondral ossification in the chicken tibia. Anat Rec 234:479–492

    PubMed  CAS  Google Scholar 

  • McKee MD, Farach-Carson MC, Butler WT, Hauschka PV, Nanci A (1993) Ultrastructural immunolocalization of noncollagenous (osteopontin and osteocalcin) and plasma (albumin and α 2HS-glycoprotein) proteins in rat bone. J Bone Miner Res 8:485–496

    PubMed  CAS  Google Scholar 

  • McKee MD, Nanci A, Khan SR (1995) Ultrastructural immunodetection of osteopontin and osteocalcin as major matrix components of renal calculi. J Bone Miner Res 10:1913–1929

    PubMed  CAS  Google Scholar 

  • Meenakshi VR, Hare PE, Wilbur KM (1971) Amino acids of the organic matrix of neogastropod shells. Comp Biochem Physiol 40B:1037–1043

    Google Scholar 

  • Meldrum EC, Mann S, Heywood BR, Frankel RB, Bazylinski DA (1993) Electron microscopy study of magnetosomes in two cultured vibrioid magnetotactic bacteria. Proc R Soc London B 251:237–242

    Google Scholar 

  • Miake Y, Aoba T, Moreno EC, Shimoda S, Prostak K, Suga S (1991) Ultrastructural studies on crystal growth of enameloid minerals in Elasmobranch and Teleost fish. Calcif Tissue Int 48:204–217

    Google Scholar 

  • Midura RJ, Wang A, Lovitch D, Law D, Powell K, Gorski JP (2004) Bone acidic glycoprotein-75 delineates the extracellular sites of future bone sialoprotein accumulation and apatite nucleation in osteoblastic cultures. J Biol Chem 279:25464–25473

    PubMed  CAS  Google Scholar 

  • Mikuni-Takagaki Y, Cheng Y (1987) Metalloproteinases in endochondral bone formation: appearance of tissue inhibitor-resistant metalloproteinases. Arch Biochem Biophys 259:576–588

    PubMed  CAS  Google Scholar 

  • Miyashita T, Takagi R, Okushima M, Nakano S, Miyamoto H, Nishikawa E, Matsushiro A (2000) Complementary DNA cloning and characterization of Pearlin, a new class of matrix protein in the nacreous layer of oyster pearls. Mar Biotechnol 2:409–418

    PubMed  CAS  Google Scholar 

  • Molnar Z (1959) Development of the parietal bone of young mice 1. Crystals of bone mineral in frozen-dried preparations. J Ultrastruct Res 3:39–45

    PubMed  CAS  Google Scholar 

  • Moore JF, Goyer RA, Wilson M (1973) Lead-induced inclusion bodies. Solubility, amino acid content, and relationship to residual acidic nuclear proteins. Lab Invest 29:488–494

    PubMed  CAS  Google Scholar 

  • Moradian-Oldak J, Gharakhanian N, Jimenez J (2002) Limited proteolysis of amelogenin: toward understanding the proteolytic processes in enamel extracellular matrix. Connect Tissue Res 43:450–455

    PubMed  CAS  Google Scholar 

  • Mutvei H (1970) Ultrastructure of the mineral and organic components of molluscan nacreous layers. Biomineralization 2:48–72

    Google Scholar 

  • Myers HM, Engström A (1965) A note on the organization of hydroxyapatite in calcified tendons. Exp Cell Res 40:182–185

    PubMed  CAS  Google Scholar 

  • Nakamura H, Hirata A, Tsuji T, Yamamoto T (2001) Immunolocalization of keratan sulfate proteoglycan in rat calvaria. Arch Histol Cytol 64:109–118

    PubMed  CAS  Google Scholar 

  • Nanci A (1999) Content and distribution of noncollagenous matrix proteins in bone and cementum: relationship to speed of formation and collagen packing density. J Struct Biol 126:256–269

    PubMed  CAS  Google Scholar 

  • Nanci A, Bai P, Warshawsky H (1983) The effect of osmium post fixation and uranyl and lead staining on the ultrastructure of young enamel in the rat incisor. Anat Rec 207:1–16

    PubMed  CAS  Google Scholar 

  • Nanci A, Ahluwalia JP, Pompura JR, Smith CE (1989) Biosynthesis and secretion of enamel proteins in the rat incisor. Anat Rec 224:277–291

    PubMed  CAS  Google Scholar 

  • Nanci A, Mocetti P, Sakamoto Y, Kunikata M, Lozupone E, Bonucci E (2000) Morphological and immunocytochemical analyses on the effects of diet-induced hypocalcemia on enamel maturation in the rat incisor. J Histochem Cytochem 48:1043–1057

    PubMed  CAS  Google Scholar 

  • Nefussi J-R, Septier D, Collin P, Goldberg M, Forest N (1989) A comparative ultrahistochemical study of glycosaminoglycans with cuprolinic blue in bone formed in vivo and in vitro. Calcif Tissue Int 44:11–19

    PubMed  CAS  Google Scholar 

  • Nefussi J-R, Septier D, Sautier J-M, Forest N, Goldberg M (1992) Localization of malachite green positive lipids in the matrix of bone nodule formed in vitro. Calcif Tissue Int 50:273–282

    PubMed  CAS  Google Scholar 

  • Nefussi JR, Brami G, Modrowski D, Oboeuf M, Forest N (1997) Sequential expression of bone matrix proteins during rat calvaria osteoblast differentiation and bone nodule formation in vitro. J Histochem Cytochem 45:493–503

    PubMed  CAS  Google Scholar 

  • Newbrey JW, Banks WJ (1975) Characterization of developing antler cartilage matrix II. An ultrastructural study. Calcif Tissue Res 17:289–302

    PubMed  CAS  Google Scholar 

  • Nusgens B, Chantraine A, Lapiere ChM (1972) The protein in the matrix of bone. Clin Orthop Relat Res 88:252–274

    PubMed  CAS  Google Scholar 

  • Nylen MU (1979) Matrix-mineral relationships — a morphologist’s viewpoint. J Dent Res 58:922–926

    PubMed  CAS  Google Scholar 

  • Nylen MU, Omnell K-Å (1962) The relationship between the apatite crystals and the organic matrix of rat enamel. Fifth International Congress for Electron Microscopy, New York, Academic Press, pp QQ–4

    Google Scholar 

  • Nylen MU, Scott DB, Mosley VM (1960) Mineralization of turkey leg tendon. II. Collagen-mineral relations revealed by electron and X-ray microscopy. In: Sognnaes RF (ed) Calcification in biological systems. American Association for the Advancement of Sciences, Washington, pp 129–142

    Google Scholar 

  • Olson OP, Watabe N (1980) Studies on formation and resorption of fish scales. IV: Ultrastructure of developing scales in newly hatched fry of the sheepshead minnow, Cyprinodon variegatus (Atheriniformes: Cyprinodontidae). Cell Tissue Res 211:303–316

    PubMed  CAS  Google Scholar 

  • Onozato H, Watabe N (1979) Studies on fish scale formation and resorption III. Fine structure and calcification of the fibrillary plates of the scales in Carassius auratus (Cypriniformes: cyprinidae). Cell Tissue Res 201:409–422

    PubMed  CAS  Google Scholar 

  • Oryschak AF, Ghadially FN (1974) Aurosomes in rabbit articular cartilage. Virchows Arch B Cell Pathol 17:159–168

    PubMed  CAS  Google Scholar 

  • Ørvig T (1968) The dermal skeleton; general considerations. In: Ørvig T (ed) Current problems of lower vertebrate phylogeny, Nobel Symp, Vol 4. Wiley, New York, pp 373–397

    Google Scholar 

  • Pokroy B, Fitch AN, Lee PL, Quintana JP, Caspi EN, Zolotoyabko E (2006) Anisotropic lattice distortions in the mollusk-made aragonite: a widespread phenomenon. J Struct Biol 153:145–150

    PubMed  CAS  Google Scholar 

  • Poole AR (1991) The growth plate: cellular physiology, cartilage assembly and mineralization. In: Hall B, Newman S (eds) Cartilage: molecular aspects. CRC Press, Boca Raton, pp 179–211

    Google Scholar 

  • Poole AR, Rosenberg LC (1986) Chondrocalcin and the calcification of cartilage. A review. Clin Orthop Relat Res 208:114–118

    PubMed  Google Scholar 

  • Poole AR, Pidoux I, Reiner A, Choi H, Rosenberg LC (1984) Association of an extracellular protein (chondrocalcin) with the calcification of cartilage in endochondral bone formation. J Cell Biol 98:54–65

    PubMed  CAS  Google Scholar 

  • Prostak KS, Lees S (1996) Visualization of crystal-matrix structure. In situ demineralization of mineralized turkey leg tendon and bone. Calcif Tissue Int 59:474–479

    PubMed  CAS  Google Scholar 

  • Prostak KS, Seifert P, Skobe Z (1993) Enameloid formation in two tetraodontiform fish species with high and low fluoride contents in enameloid. Arch Oral Biol 38:1031–1044

    PubMed  CAS  Google Scholar 

  • Pugliarello MC, Vittur F, de Bernard B, Bonucci E, Ascenzi A (1970) Chemical modifications in osteones during calcification. Calcif Tissue Res 5:108–114

    PubMed  CAS  Google Scholar 

  • Qin C, Brunn JC, Cook RG, Orkiszewski RS, Malone JP, Veis A, Butler WT (2004) Evidence for the proteolytic processing of dentinmatrix protein 1. Identification and characterization of processed fragments and cleavage sites. J Biol Chem 278:34700–34708

    Google Scholar 

  • Rahman MA, Isa Y, Uehara T (2005) Proteins of calcified endoskeleton: II Partial amino acid sequences of endoskeletal proteins and the characterization of proteinaceous organic matrix of spicules from the alcyonarian, Synularia polydactyla. Proteomics 5:885–893

    PubMed  CAS  Google Scholar 

  • Richter GW, Kress Y, Cornwall CC (1968) Another look at lead inclusion bodies. Am J Pathol 53:189–217

    PubMed  CAS  Google Scholar 

  • Riminucci M, Silvestrini G, Bonucci E, Fisher LW, Gehron Robey P, Bianco P (1995) The anatomy of bone sialoprotein immunoreactive sites in bone as revealed by combined ultrastructural histochemistry and immunohistochemistry. Calcif Tissue Int 57:277–284

    PubMed  CAS  Google Scholar 

  • Robinson RA (1952) An electron-microscopic study of the crystalline inorganic component of bone and its relationship to the organic matrix. J Bone Joint Surg 34-A:389–434

    PubMed  CAS  Google Scholar 

  • Robinson RA, Cameron DA (1956) Electron microscopy of cartilage and bone matrix at the distal epiphyseal line of the femur in the newborn infant. J Biophys Biochem Cytol 2:253–263

    PubMed  Google Scholar 

  • Robinson RA, Watson ML (1952) Collagen-crystal relationships in bone as seen in the electron microscope. Anat Rec 114:383–409

    PubMed  CAS  Google Scholar 

  • Rönnholm E (1962) III. The structure of the organic stroma of human enamel during amelogenesis. J Ultrastruct Res 3:368–389

    Google Scholar 

  • Ryall RL, Fleming DE, Grover PK, Chauvet M, Dean CJ, Marshall VR (2000) The hole truth: intracrystalline proteins and calcium oxalate kidney stones. Mol Urol 4:391–402

    PubMed  CAS  Google Scholar 

  • Ryall RL, Fleming DE, Doyle IR, Evans NA, Dean CJ, Marshall VR (2001) Intracrystalline proteins and the hidden ultrastructure of calcium oxalate urinary crystals: implications for kidney stone formation. J Struct Biol 134:5–14

    Google Scholar 

  • Saleuddin ASM (1971) Fine structure of normal and regenerated shell of Helix. Can J Zool 49:37–41

    PubMed  CAS  Google Scholar 

  • Sasagawa I (2002) Mineralization patterns in elasmobranch fish. Microsc Res Tech 59:396–407

    PubMed  CAS  Google Scholar 

  • Sasagawa I, Ferguson MW (1990) Fine structure of the organic matrix remaining in the mature cap enameloid in Halichoeres poecilopterus, teleost. Arch Oral Biol 35:765–770

    PubMed  CAS  Google Scholar 

  • Sasagawa I, Ishiyama M (1988) The structure and development of the collar enameloid in two teleost fishes, Halichoeres poecilopterus and Pagrus major. Anat Embryol (Berl) 178:499–511

    PubMed  CAS  Google Scholar 

  • Satoyoshi M, Kawata A, Koizumi T, Inoue K, Itohara S, Teranaka T, Mikuni-Takagaki Y (2001) Matrix metalloproteinase-2 in dentin matrix mineralization. J Endod 27:462–466

    PubMed  CAS  Google Scholar 

  • Sauren YMHF, Mieremet RHP, Groot CG, Scherft JP (1989) An electron microscopical study on the presence of proteoglycans in the calcified bone matrix by use of cuprolinic blue. Bone 10:287–294

    PubMed  CAS  Google Scholar 

  • Scherft JP (1968) The ultrastructure of the organic matrix of calcified cartilage and bone in embryonic mouse radii. J Ultrastruct Res 23:333–343

    Google Scholar 

  • Scherft JP (1978) The lamina limitans of the organic bone matrix: formation in vitro. J Ultrastruct Res 64:173–181

    PubMed  CAS  Google Scholar 

  • Scherft JP, Moskalewski S (1984) The amount of proteoglycans in cartilage matrix and the onset of mineralization. Metab Bone Dis Rel Res 5:195–203

    CAS  Google Scholar 

  • Schönbörner AA, Boivin G, Baud CA (1979) The mineralization processes in teleost fish scales. Cell Tissue Res 202:203–212

    PubMed  Google Scholar 

  • Scott BL, Pease DC (1956) Electron microscopy of the epiphyseal apparatus. Anat Rec 126:465–495

    PubMed  CAS  Google Scholar 

  • Serafini-Fracassini A, Smith JW (1974) The structure and biochemistry of cartilage. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Seto J, Zhang Y, Hamilton P, Wilt F (2004) The localization of occluded matrix proteins in calcareous spicules of sea urchin larvae. J Struct Biol 148:123–130

    PubMed  CAS  Google Scholar 

  • Seyer JM, Glimcher MJ (1977) Evidence for the presence of numerous protein components in immature bovine dental enamel. Calcif Tissue Res 24:253–257

    PubMed  CAS  Google Scholar 

  • Shelton KR, Egle PM (1982) The proteins of lead-induced intranuclear inclusion bodies. J Biol Chem 257:11802–11807

    PubMed  CAS  Google Scholar 

  • Shen X, Belcher AM, Hansma PK, Stucky GD, Morse DE (1997) Molecular cloning and characterization of Lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens. J Biol Chem 272:32472–32481

    PubMed  CAS  Google Scholar 

  • Shepard N (1992) Role of proteoglycans in calcification. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 41–58

    Google Scholar 

  • Shepard N, Mitchell N (1981) Acridine orange stabilization of glycosaminoglycans in beginning endochondral ossification. A comparative light and electron microscopic study. Histochemistry 70:107–114

    PubMed  CAS  Google Scholar 

  • Sire J-Y, Géraudie J (1984) Fine structure of regenerating scales and their associated cells in the cichlid Hemichromis bimaculatus (Gill). Cell Tissue Res 237:537–547

    Google Scholar 

  • Smales FC (1975) Structural subunit in prisms of immature rat enamel. Nature 258:772–774

    PubMed  CAS  Google Scholar 

  • Smith JW (1970) The disposition of protein-polysaccharide in the epiphyseal plate cartilage of the young rabbit. J Cell Sci 6:843–864

    PubMed  CAS  Google Scholar 

  • Stern DN, Song MJ, Landis WJ (1992) Tubule formation and elemental detection in developing opossum enamel. Anat Rec 234:34–48

    PubMed  CAS  Google Scholar 

  • Su X, Sun K, Cui FZ, Landis WJ (2003) Organization of apatite crystals in human woven bone. Bone 32:150–162

    PubMed  CAS  Google Scholar 

  • Sundström B, Takuma S (1971) A further contribution on the ultrastructure of calcifying cartilage. J Ultrastruct Res 36:419–424

    PubMed  Google Scholar 

  • Takagi M, Parmley RT, Toda Y, Austin RL (1982) Ultrastructural cytochemistry and immunocytochemistry of sulfated glycosamiglycans in epiphyseal cartilage. J Histochem Cytochem 30:1179–1185

    PubMed  CAS  Google Scholar 

  • Takagi M, Parmley RT, Toda Y, Denys FR (1983) Ultrastructural cytochemistry of complex carbohydrates in osteoblasts, osteoid, and bone matrix. Calcif Tissue Int 35:309–319

    PubMed  CAS  Google Scholar 

  • Takagi M, Kamiya N, Urushizaki T, Tada Y, Tanaka H (2000) Gene expression and immunohistochemical localization of biglycan in association with mineralization in the matrix of epiphyseal cartilage. Histochem J 32:175–186

    PubMed  CAS  Google Scholar 

  • Takuma S (1960) Electron microscopy of the developing cartilaginous epiphysis. Arch Oral Biol 2:111–119

    PubMed  CAS  Google Scholar 

  • Taylor AP, Barry JC (2004) Magnetosomal matrix: ultrafine structure may template biomineralization of magnetosomes. J Microsc 213:180–197

    PubMed  CAS  Google Scholar 

  • Termine JD, Belcourt AB, Christner PJ, Conn KM, Nylen MU (1980) Properties of dissociatively extracted fetal tooth matrix proteins I. Principal molecular species in developing bovine enamel. J Biol Chem 255:9760–9768

    PubMed  CAS  Google Scholar 

  • Termine JD, Belcourt AB, Conn KM, Kleinman HK (1981) Mineral and collagen-binding proteins of fetal calf bone. J Biol Chem 256:10403–10408

    PubMed  CAS  Google Scholar 

  • Thomas RS, Greenawalt JW (1968) Microincineration, electron microscopy, and electron diffraction of calcium-phosphate-loaded mitochondria. J Cell Biol 39:55–76

    PubMed  CAS  Google Scholar 

  • Thyberg J (1977) Electron microscopy of cartilage proteoglycans. Histochem J 9:259–266

    PubMed  CAS  Google Scholar 

  • Thyberg J, Lohmander S, Friberg U (1973) Electron microscopic demonstration of proteoglycans in guinea pig epiphyseal cartilage. J Ultrastruct Res 45:407–427

    PubMed  CAS  Google Scholar 

  • Tong H, Hu J, Ma W, Zhong G, Yao S, Cao N (2002) In situ analysis of the organic framework in the prismatic layer of mollusc shell. Biomaterials 23:2593–2598

    PubMed  CAS  Google Scholar 

  • Towe KM, Hamilton GH (1968) Ultrastructure and inferred calcification of the mature and developing nacre in bivalve mollusks. Calcif Tissue Res 1:306–318

    PubMed  CAS  Google Scholar 

  • Traub W, Jodaikin A, Weiner S (1985) Diffraction studies of enamel protein-mineral structural relations. In: Butler WT (ed) The chemistry and biology of mineralized tissues. Ebsco Media, Inc., Birmingham, pp 221–225

    Google Scholar 

  • Traub W, Arad T, Weiner S (1989) Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. Proc Natl Acad Sci USA 86:9822–9826

    PubMed  CAS  Google Scholar 

  • Traub W, Arad T, Weiner S (1992) Origin of mineral crystal growth in collagen fibrils. Matrix 12:251–255

    PubMed  CAS  Google Scholar 

  • Travis DF (1968) Comparative ultrastructure and organization of inorganic crystals and organic matrices of mineralized tissues. Biology of the mouth. American Association for the Advancement of Sciences, Washington, pp 237–297

    Google Scholar 

  • Travis DF (1970) The comparative ultrastructure and organization of five calcified tissues. In: Schraer H (ed) Biological calcification: cellular and molecular aspects. Appleton-Century-Crofts, New York, pp 203–311

    Google Scholar 

  • Travis DF, Glimcher MJ (1964) The structure and organization of, and the relationship between the organic matrix and the inorganic crystals of embryonic bovine enamel. J Cell Biol 23:447–497

    PubMed  CAS  Google Scholar 

  • Travis DF, Gonsalves M (1969) Comparative ultrastructure and organization of the prismatic region of two bivalves and its possible relation to the chemical mechanism of boring. Am Zool 9:635–661

    Google Scholar 

  • Urry LA, Hamilton PC, Killian CE, Wilt FH (2000) Expression of spicule matrix proteins in the sea urchin embryo during normal and experimentally altered spiculogenesis. Dev Biol 225:201–213

    PubMed  CAS  Google Scholar 

  • Vaes G, Eeckhout Y, Druetz JE (1976) A latent neutral protease released by bone in culture. Arch Int Physiol Biochim 84:666–668

    PubMed  CAS  Google Scholar 

  • van der Rest M, Rosenberg LC, Olsen BR, Poole AR (1986) Chondrocalcin is identical with the C-propeptide of type II procollagen. Biochem J 237:923–925

    PubMed  Google Scholar 

  • van der Wal P, de Jong EW, Westbroek P, de Bruijn WC, Mulder-Stapel AA (1983) Polysaccharide localization, coccolith formation, and Golgi dynamics in the coccolithophorid Hymenomonas carterae. J Ultrastruct Res 85:139–158

    PubMed  Google Scholar 

  • Van Emburg PR, de Jong EW, Daems WT (1986) Immunochemical localization of a polysaccharide from biomineral structures (coccoliths) of Emiliania huxleyi. J Ultrastruct Molec Struct Res 94:246–259

    Google Scholar 

  • van Mullem PJ, Stadhouders AM (1974) Bone marking and lead intoxication. Early pathological changes in osteoclasts. Virchows Arch B Cell Path 15:345–350

    Google Scholar 

  • Veis A (2003) Mineralization in organic matrix frameworks. Rev Mineral Geochem 54:249–289

    CAS  Google Scholar 

  • Veis DJ, Albinger TM, Clohisy J, Rahima M, Sabsay B, Veis A (1986) Matrix proteins of the teeth of the sea urchin Lytechinus variegatus. J Exp Zool 240:35–46

    PubMed  CAS  Google Scholar 

  • Veis A, Barss J, Dahl T, Rahima M, Stock S (2002) Mineral-related proteins of sea urchin teeth: Lytechinus variegatus. Microsc Res Tech 59:342–351

    PubMed  CAS  Google Scholar 

  • Waddington RJ, Embery G, Last KS (1988) The glycosaminoglycan constituents of alveolar and basal bone of the rabbit. Connect Tissue Res 17:171–180

    PubMed  CAS  Google Scholar 

  • Walton RC, Kavanagh JP, Heywood BR (2003) The density and protein content of calcium oxalate crystals precipitated from human urine: a tool to investigate ultrastructure and the fractional volume occupied by organic matrix. J Struct Biol 143:14–23

    PubMed  CAS  Google Scholar 

  • Wang A, Martin JA, Lembke LA, Midura RJ (2000) Reversible suppression of in vitro biomineralization by activation of protein kinase A. J Biol Chem 275:11082–11091

    PubMed  CAS  Google Scholar 

  • Warshawsky H (1971) A light and electron microscopic study of the nearly mature enamel of rat incisors. Anat Rec 169:559–584

    PubMed  CAS  Google Scholar 

  • Warshawsky H (1987) External shape of enamel crystals. Scanning Microsc 1:1913–1923

    PubMed  CAS  Google Scholar 

  • Watabe N (1963) Decalcification of thin sections for electron microscope studies of crystalmatrix relationships in mollusc shells. J Cell Biol 18:701–703

    PubMed  CAS  Google Scholar 

  • Watabe N (1965) Studies on shell formation. XI. Crystal-matrix relationships in the inner layer of mollusk shells. J Ultrastruct Res 12:351–370

    PubMed  CAS  Google Scholar 

  • Weinbach EC, von Brand T (1965) The isolation and composition of dense granules from Ca++-loaded mitochondria. Biochem Biophys Res Comm 19:133–136

    CAS  Google Scholar 

  • Weiner S (1985) Organic matrixlike macromolecules associated with the mineral phase of sea urchin skeletal plates and teeth. J Exp Zool 234:7–15

    PubMed  CAS  Google Scholar 

  • Weiner S, Traub W (1980) X-ray diffraction study of the insoluble organic matrix of mollusk shells. FEBS Lett 111:311–316

    CAS  Google Scholar 

  • Weiner S, Traub W (1984) Macromolecules in mollusc shells and their function in biomineralization. Phil Trans R Soc London 304B:425–434

    Google Scholar 

  • Weiner S, Traub W (1986) Organization of hydroxyapatite crystals within collagen fibrils. Feder Eur Bioch Soc 206:262–266

    CAS  Google Scholar 

  • Weiner S, Talmon Y, Traub W (1983) Electron diffraction of mollusk shell organic matrices and their relationship to the mineral phase. Int J Biol Macromol 5:325–328

    CAS  Google Scholar 

  • Westbroek P, de Jong EW, Dam W, Bosch L (1973) Soluble intracrystalline polysaccharides from coccoliths of Coccolithus huxleyi (Lohmann) Kamptner (I). Calcif Tissue Res 12:227–238

    PubMed  CAS  Google Scholar 

  • White SW, Hulmes DJS, Miller A, Timmins PA (1977) Collagen-mineral axial relationship in calcified turkey leg tendon by X-ray and neutron diffraction. Nature 266:421–425

    PubMed  CAS  Google Scholar 

  • Williams A (1970) Spiral growth of the laminar shell of the brachiopod Crania. Calcif Tissue Res 6:11–19

    PubMed  CAS  Google Scholar 

  • Williams DC, Boder GB, Toomey RE, Paul DC, Hillman CC Jr, King KL, Van Frank RM, Johnston CC Jr (1980) Mineralization and metabolic response in serially passaged adult rat bone cells. Calcif Tissue Int 30:233–246

    PubMed  CAS  Google Scholar 

  • Wilt FH (1999) Matrix and mineral in the sea urchin larval skeleton. J Struct Biol 126:216–226

    PubMed  CAS  Google Scholar 

  • Wilt FH (2005) Developmental biology meets materials science: morphogenesis of biomineralized structures. Dev Biol 280:15–25

    PubMed  CAS  Google Scholar 

  • Wong V, Saleuddin ASM (1972) Fine structure of normal and regenerated shell of Helisoma duryi duryi. Can J Zool 50:1563–1568

    Google Scholar 

  • Wu CW, Tchetina EV, Mwale F, Hasty K, Pidoux I, Reiner A, Chen J, Van W, Poole AR (2002) Proteolysis involving matrix metalloproteinase 13 (collagenase-3) is required for chondrocyte differentiation that is associated with matrix mineralization. J Bone Miner Res 17:639–651

    PubMed  CAS  Google Scholar 

  • Yamada J (1971) A fine structural aspect of the development of scales in the chum salmon fry. Bull Jpn Soc Sci Fish 37:18–29

    Google Scholar 

  • Yamada J, Watabe N (1979) Studies on fish scale formation and resorption I. Fine structure and calcification of the scales in Fundulus heteroclitus (Atheriniformes: cyprinodontidae). J Morphol 159:49–66

    Google Scholar 

  • Yamada M, Ozawa H (1978) Ultrastructural and cytochemical studies on the matrix vesicle calcification in the teeth of the killifish, Oryzias latipes. Arch Histol Jpn 41:309–323

    PubMed  CAS  Google Scholar 

  • Young JR, Davis SA, Bown PR, Mann S (1999) Coccolith ultrastructure and biomineralisation. J Struct Biol 126:195–215

    PubMed  CAS  Google Scholar 

  • Zylberberg L, Nicolas G (1982) Ultrastructure of scales in a teleost (Carassius auratus L.) after use of rapid freez-fixation and freeze-substitution. Cell Tissue Res 223:349–367

    PubMed  CAS  Google Scholar 

  • Zylberberg L, Géraudie J, Meunier F, Sire J-Y (1992) Biomineralization in the integumental skeleton of the living lower vertebrates. In: Hall BK (ed) Bone, volume 4: Bone metabolism and mineralization. CRC Press, Boca Raton, pp 171–224

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). The Organic-inorganic Relationships in Calcifying Matrices. In: Biological Calcification. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36013-1_16

Download citation

Publish with us

Policies and ethics