Skip to main content

Calcifying Matrices: Non-skeletal Structures

  • Chapter
Biological Calcification
  • 714 Accesses

13.6 Concluding Remarks

Calcified non-skeletal matrices and unicellular organisms provide important, reliable models of biological calcification. The following features deserve special consideration:

  • The calcified tissues, cells and structures considered in this chapter are analogous with skeletal tissues as far as the presence of organic material in calcified areas is concerned.

  • Polysaccharides and proteins are the components most often described in this material; proteolipids and calcium-acidic phospholipid-phosphate complexes do, however, characterize the calcification of oral bacteria.

  • Many of these substances are acidic or strongly acidic, and may be phosphorylated.

  • Several specific proteins have been isolated and characterized; their descriptive, at least partly subjective names point to the uncertainty of their nature and function.

  • Intracellular or extracellular vesicles or compartments have been described as sites of initial calcification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abatangelo G, Daga-Gordini D, Castellani I, Cortivo R (1978) Some observations on the calcium ion binding of the eggshell matrix. Calcif Tissue Int 26:247–252

    Article  CAS  Google Scholar 

  • Ajikumar PK, Lakshminarayanan R, Ong BT, Valiyaveettil S, Kini RM (2003) Eggshell matrix protein mimics: designer peptides to induce the nucleation of calcite crystal aggregates in solution. Biomacromolecules 4:1321–1326

    Article  PubMed  CAS  Google Scholar 

  • Arakaki A, Webb J, Matsunaga T (2002) A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J Biol Chem 278:8745–8750

    Article  PubMed  CAS  Google Scholar 

  • Arias JL, Carrino DA, Fernandez MS, Rodriguez JP, Dennis JE, Caplan AI (1992) Partial biochemical and immunochemical characterization of avian eggshell extracellular matrices. Arch Biochem Biophys 298:293–302

    Article  PubMed  CAS  Google Scholar 

  • Arias JL, Fink DJ, Xiao S-Q, Heuer AH, Caplan AI (1993) Biomineralization and eggshells: cell-mediated acellular compartments of mineralized extracellular matrix. Int Rev Cytol 145:217–250

    PubMed  CAS  Google Scholar 

  • Arias JL, Nakamura O, Fernández MS, Wu J-J, Knigge P, Eyre DR, Caplan AI (1997) Role of type X collagen on experimental mineralization of eggshell membranes. Connect Tiss Res 36:21–33

    CAS  Google Scholar 

  • Baconnier S, Lang SB, Polomska M, Hilczer B, Berkovic G, Meshulam G (2002) Calcite microcrystals in the pineal gland of the human brain: first physical and chemical studies. Bioelectromagnetics 23:488–495

    Article  PubMed  CAS  Google Scholar 

  • Balkwill DL, Maratea D, Blakemore RP (1980) Ultrastructure of a magnetotactic spirillum. J Bacteriol 141:1399–1408

    PubMed  CAS  Google Scholar 

  • Bloom W, Bloom MA, McLean FC (1942) Calcification and ossification. Medullary bone changes in the reproductive cycle of female pigeons. Anat Rec 83:443–466

    Article  Google Scholar 

  • Borelli G, Mayer-Gostan N, Merle PL, De Pontual H, Boeuf G, Allemand D, Payan P (2003) Composition of biomineral organic matrices with special emphasis on turbot (Psetta maxima) otolith and endolimph. Calcif Tissue Int 72:717–725

    Article  PubMed  CAS  Google Scholar 

  • Boyan BD, Boskey AL (1984) Co-isolation of proteolipids and calcium-phospholipid-phosphate complexes. Calcif Tissue Int 36:214–218

    Article  PubMed  CAS  Google Scholar 

  • Boyan BD, Landis WJ, Knight J, Dereszewski G, Zeagler J (1984) Microbial hydroxyapatite formation as a model of proteolipid-dependent membrane-mediated calcification. Scann Electr Microsc 4:1793–1800

    Google Scholar 

  • Boyan BD, Swain LD, Everett MM, Schwartz Z (1992) Mechanisms of microbial mineralization. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 129–156

    Google Scholar 

  • Carrino DA, Dennis JE, Wu T-M, Arias JL, Fernandez MS, Rodriguez JP, Fink DJ, Heuer AH, Caplan AI (1996) The avian eggshell extracellular matrix as a model for biomineralization. Connect Tissue Res 35:325–329

    PubMed  CAS  Google Scholar 

  • Carrino DA, Rodriguez JP, Caplan AI (1997) Dermatan sulfate proteoglycans from the mineralized matrix of the avian eggshell. Connect Tissue Res 36:175–193

    PubMed  CAS  Google Scholar 

  • Comar CL, Driggers JC (1949) Secretion of radioactive calcium in the hen’s egg. Science 109:282

    Article  CAS  PubMed  Google Scholar 

  • Dennis JE, Xiao S-Q, Agarwal M, Fink DJ, Heuer AH, Caplan AI (1996) Microstructure of matrix and mineral components of eggshells from white leghorn chickens (Gallus gallus). J Morphol 228:287–306

    Article  CAS  Google Scholar 

  • Dennis JE, Carrino DA, Yamashita K, Caplan AI (2000) Monoclonal antibodies to mineralized matrix molecules of the avian eggshell. Matrix Biol 19:683–692

    Article  PubMed  CAS  Google Scholar 

  • Ennever J (1960) Intracellular calcification by oral filamentous microrganisms. J Periodontol 31:304–307

    Google Scholar 

  • Everett LA, Belyantseva IA, Noben-Trauth K, Cantos R, Chen A, Thakkar SI, Hoogstraten-Miller SL, Kachar B, Wu DK, Green ED (2001) Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet 10:153–161

    Article  PubMed  CAS  Google Scholar 

  • Fernandez MS, Araya M, Arias JL (1997) Eggshells are shaped by a precise spatio-temporal arrangement of sequentially deposited macromolecules. Matrix Biol 16:13–20

    Article  PubMed  CAS  Google Scholar 

  • Fernandez MS, Moya A, Lopez L, Arias JL (2001) Secretion pattern, ultrastructural localization and function of extracellular matrix molecules involved in eggshell formation. Matrix Biol 19:793–803

    Article  CAS  Google Scholar 

  • Fernandez MS, Escobar C, Lavelin I, Pines M, Arias JL (2003) Localization of osteopontin in oviduct tissue and eggshell during different stages of the avian egg laying cycle. J Struct Biol 143:171–180

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald RJ, McDaniel EG (1960) Dental calculus in the germ-free rat. Arch Oral Biol 2:239–240

    Article  PubMed  CAS  Google Scholar 

  • Gautron J, Hincke MT, Nys Y (1997) Precursor matrix proteins in the uterine fluid change with stage of eggshell formation in hens. Connect Tissue Res 36:195–210

    Article  PubMed  CAS  Google Scholar 

  • Gautron J, Hincke MT, Panhéleux M, Garcia-Ruiz J, Nys Y (2000) Identification and characterization of matrix proteins from hen’s eggshell. In: Goldberg M, Boskey A, Robinson C (eds) Chemistry and biology of mineralized tissues. American Academy of Orthopaedic Surgeons, Rosemont, pp 19–23

    Google Scholar 

  • Gautron J, Hincke MT, Panheleux M, Garcia-Ruiz JM, Boldicke T, Nys Y (2001a) Ovotransferrin is a matrix protein of the hen eggshell membranes and basal calcified layer. Connect Tissue Res 42:255–267

    PubMed  CAS  Google Scholar 

  • Gautron J, Hincke MT, Mann K, Panhéleux M, Bain M, McKee MD, Solomon SE, Nys Y (2001b) Ovocalyxin-32, a novel chicken eggshell matrix protein. Isolation, amino acid sequencing, cloning, and immunocytochemical localization. J Biol Chem 276:39243–39252

    Article  PubMed  CAS  Google Scholar 

  • Gonzales HA, Sognnaes RF (1960) Electron microscopy of dental calculus. Science 131:156–158

    Article  PubMed  CAS  Google Scholar 

  • Gorby YA, Beveridge TJ, Blakemore RP (1988) Characterization of the bacterial magneto-some membrane. J Bacteriol 170:834–841

    PubMed  CAS  Google Scholar 

  • Grünberg K, Müller EC, Otto A, Reszka R, Linder D, Kube M, Reinhardt R, Schüler D (2004) Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 70:1040–1050

    Article  PubMed  CAS  Google Scholar 

  • Hayashi Y (1993) High resolution electron microscopy of the junction between enamel and dental calculus. Scanning Microsc 7:973–978

    PubMed  CAS  Google Scholar 

  • Heaney RK, Robinson DS (1976) The isolation and characterization of hyaluronic acid in egg shell. Biochim Biophys Acta 451:133–142

    PubMed  CAS  Google Scholar 

  • Hincke MT (1995) Ovalbumin is a component of the chicken eggshell matrix. Connect Tissue Res 31:227–233

    PubMed  CAS  Google Scholar 

  • Hincke MT, Tsang CPW, Courtney M, Hill V, Narbaitz R (1995) Purification and immunohistochemistry of a soluble matrix protein of the chicken eggshell (Ovocleidin 17). Calcif Tissue Int 56:578–583

    Article  PubMed  CAS  Google Scholar 

  • Hincke MT, Gautron J, Tsang CPW, McKee MD, Nys Y (1999) Molecular cloning and ultrastructural localization of the core protein of an eggshell matrix proteoglycan, ovocleidin-116. J Biol Chem 274:32915–32923

    Article  PubMed  CAS  Google Scholar 

  • Hincke MT, Gautron J, Panhéleux M, Garcia-Ruiz J, McKee MD, Nys Y (2000) Identification and localization of lysozyme as a component of eggshell membranes and eggshell matrix. Matrix Biol 19:443–453

    Article  PubMed  CAS  Google Scholar 

  • Hincke MT, Gautron J, Mann K, Panheleux M, McKee MD, Bain M, Solomon SE, Nys Y (2003) Purification of ovocalyxin-32, a novel chicken eggshell matrix protein. Connect Tissue Res 44:16–19

    PubMed  CAS  Google Scholar 

  • Hirokawa Y, Fujiwara S, Tsuzuki M (2005) Three types of acidic polysaccharides associated with coccolith of Pleurochrysis haptonemofera: comparison with Pleurochrysis carterae and analysis using fluorescein-isothiocyanate-labeled lectins. Mar Biotechnol (NY) 7:634–644

    Article  CAS  Google Scholar 

  • Höhling HJ, Pfefferkorn G, Radicke J, Vahl J (1969) Elektronenmikroskopische Untersuchungen zur organischen Matrix und Kristalbildung in meschlichen Speichelsteinen. Deut Zahnärztl Z 24:663–670

    Google Scholar 

  • Hughes I, Blasiole B, Huss D, Warchol ME, Rath NP, Hurle B, Ignatova E, Dickman JD, Thalmann R, Levenson R, Ornitz DM (2004) Otopetrin 1 is required for otolith formation in the zebrafish Danio rerio. Dev Biol 276:391–402

    Article  PubMed  CAS  Google Scholar 

  • Humbert P, Pevet P (1995) Calcium concretions in the pineal gland of aged rats: an ultrastructural and microanalytical study of their biogenesis. Cell Tissue Res 279:565–573

    PubMed  CAS  Google Scholar 

  • Kobayashi S (1971) Acid mucopolysaccharides in calcified tissues. Int Rev Cytol 30:257–371

    Article  PubMed  CAS  Google Scholar 

  • Kodaka T, Mori R, Debari K, Yamada M (1994) Scanning electron microscopy and electron probe microanalysis studies of human pineal concretions. J Electron Microsc (Tokyo) 43:307–317

    CAS  Google Scholar 

  • Komeili A, Vali H, Beveridge TJ, Newman DK (2004) Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc Natl Acad Sci U S A 101:3839–3844

    Article  PubMed  CAS  Google Scholar 

  • Lakshminarayanan R, Kini RM, Valiyaveettil S (2002) Investigation of the role of ansocalcin in the biomineralization in goose eggshell matrix. Proc Natl Acad Sci USA 99:5155–5159

    Article  PubMed  CAS  Google Scholar 

  • Lakshminarayanan R, Valiyaveettil S, Rao VS, Kini RM (2003) Purification, characterization, and in vitro mineralization studies of a novel goose eggshell matrix protein, ansocalcin. J Biol Chem 278:2928–2936

    Article  PubMed  CAS  Google Scholar 

  • Lewczuk B, Przybylska B, Wyrzykowski Z (1994) Distribution of calcified concretions and calcium ions in the pig pineal gland. Folia Histochem Cytobiol 32:243–249

    PubMed  CAS  Google Scholar 

  • Lie T, Selvig KA (1974a) Calcification of oral bacteria: an ultrastructural study of two strains of Bacterionema matruchotii. Scand J Dent Res 82:8–18

    PubMed  CAS  Google Scholar 

  • Lie T, Selvig KA (1974b) Effect of salivary proteins on calcification of oral bacteria. Scand J Dent Res 82:135–143

    PubMed  CAS  Google Scholar 

  • Lo Storto S, Di Grezia R, Silvestrini G, Cattabriga M, Bonucci E (1990) Studio morfologico ultrastrutturale di tartaro sopragengivale. Min Stomat 39:83–89

    Google Scholar 

  • Lo Storto S, Silvestrini G, Bonucci E (1992) Ultrastructural localization of alkaline and acid phosphatase activities in dental plaque. J Periodont Res 27:161–166

    Article  PubMed  Google Scholar 

  • Mann K (1999) Isolation of a glycosylated form of the chicken eggshell protein ovocleidin and determination of the glycosylation site. Alternative glycosylation/phosphorylation at an N-glycosylation sequon. FEBS Lett 463:12–14

    Article  PubMed  CAS  Google Scholar 

  • Mann K, Siedler F (1999) The amino acid sequence of ovocleidin 17, a major protein of the avian eggshell calcified layer. Biochem Mol Biol Int 47:997–1007

    PubMed  CAS  Google Scholar 

  • Mann K, Siedler F (2004) Ostrich (Struthio camelus) eggshell matrix contains two different C-type lectin-like proteins. Isolation, amino acid sequence, and posttranslational modifications. Biochim Biophys Acta 1696:41–50

    PubMed  CAS  Google Scholar 

  • Mann K, Hincke MT, Nys Y (2002) Isolation of ovocleidin-116 from chicken eggshells, correction of its amino acid sequence and identification of disulfide bonds and glycosylated Asn. Matrix Biol 21:383–387

    Article  PubMed  CAS  Google Scholar 

  • Mann K, Gautron J, Nys Y, McKee MD, Bajari T, Schneider WJ, Hincke MT (2003) Disulfidelinked heterodimeric clusterin is a component of the chicken eggshell matrix and egg white. Matrix Biol 22:397–407

    Article  PubMed  CAS  Google Scholar 

  • Marsh ME (1994) Polyanion-mediated mineralization-assembly and reorganization of acidic polysaccharides in the Golgi system of a coccolithophorid alga during mineral deposition. Protoplasma 177:108–122

    Article  CAS  Google Scholar 

  • Marsh ME (2003) Regulation of CaCO3 formation in coccolithophores. Comp Biochem Physiol B Biochem Mol Biol 136:743–754

    Article  PubMed  CAS  Google Scholar 

  • Marsh ME, Chang D-K, King GC (1992) Isolation and characterization of a novel acidic polysaccharide containing tartrate and glyoxylate residues from the mineralized scales of a unicellular coccolithophorid alga Pleurochrysis carterae. J Biol Chem 267:20507–20512

    PubMed  CAS  Google Scholar 

  • Marsh ME, Ridall AL, Azadi P, Duke PJ (2002) Galacturonomannan and Golgi-derived membrane linked to growth and shaping of biogenic calcite. J Struct Biol 139:39–45

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga T, Okamura Y (2003) Genes and proteins involved in bacterial magnetic particle formation. Trends Microbiol 11:536–541

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga T, Tsujimura N, Okamura Y, Takeyama H (2000) Cloning and characterization of a gene, mpsA, encoding a protein associated with intracellular magnetic particles from Magnetospirillum sp. strain AMB-1. Biochem Biophys Res Comm 268:932–937

    Article  PubMed  CAS  Google Scholar 

  • Murayama E, Okuno A, Ohira T, Takagi Y, Nagasawa H (2000) Molecular cloning and expression of an otolith matrix protein cDNA from the rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol 126B:511–520

    CAS  Google Scholar 

  • Murayama E, Takagi Y, Ohira T, Davis JG, Greene MI, Nagasawa H (2002) Fish otolith contains a unique structural protein, otolin-1. Eur J Biochem 269:688–696

    Article  PubMed  CAS  Google Scholar 

  • Murayama E, Takagi Y, Nagasawa H (2004) Immunohistochemical localization of two otolith matrix proteins in the otolith and inner ear of the rainbow trout, Oncorhynchus mykiss: comparative aspects between the adult inner ear and embryonic otocysts. Histochem Cell Biol 121:155–166

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Ikawa N, Ozimek L (2001) Extraction of glycosaminoglycans from chicken eggshell. Poult Sci 80:681–684

    PubMed  CAS  Google Scholar 

  • Nakano T, Ikawa N, Ozimek L (2002) Galactosaminoglycan composition in chicken eggshell. Poult Sci 81:709–714

    PubMed  CAS  Google Scholar 

  • Nakano T, Ikawa NI, Ozimek L (2003) Chemical composition of chicken eggshell and shell membranes. Poult Sci 82:510–514

    PubMed  CAS  Google Scholar 

  • Nimtz M, Conradt HS, Mann K (2004) LacdiNAc (GalNAcβ1-4GlcNAc) is a mjor motif in N-glycan structures of the chicken eggshell protein ovocleidin-116. Biochim Biophys Acta 1675:71–80

    PubMed  CAS  Google Scholar 

  • Okamura Y, Takeyama H, Matsunaga T (2000) Two-dimensional analysis of proteins specific to the bacterial magnetic particle membrane from Magnetospirillum sp. AMB-1. Appl Biochem Biotechnol 84–86:441–446

    Article  PubMed  Google Scholar 

  • Okamura Y, Takeyama H, Matsunaga T (2001) A magnetosome-specific GTPase from the magnetic bacterium Magnetospirillum magneticum AMB-1. J Biol Chem 276:48183–48188

    Article  PubMed  CAS  Google Scholar 

  • Outka DE, Williams DC (1971) Sequential coccolith morphoegensis in Hymenomonas carterae. J Protozool 18:285–297

    PubMed  CAS  Google Scholar 

  • Ozaki N, Sakuda S, Nagasawa H (2001) Isolation and some characterization of an acidic polysaccharide with anti-calcification activity from coccoliths of a marine alga, Pleurochrysis carterae. Biosci Biotech Biochem 65:2330–2333

    Article  CAS  Google Scholar 

  • Panhéleux M, Bain M, Fernandez MS, Morales I, Gautron J, Arias JL, Solomon SE, Hincke M, Nys Y (1999) Organic matrix composition and ultrastructure of eggshell: a comparative study. Br Poult Sci 40:240–252

    Article  PubMed  Google Scholar 

  • Pautard FGE (1970) Calcification in unicellular organisms. In: Schraer H (ed) Biological calcification: cellular and molecular aspects. Appleton-Century-Crofts, New York, pp 105–201

    Google Scholar 

  • Picard J, Paul-Gardais A, Vedel M (1973) Glycoprotéines sulfates des membranes de l’oeuf de poule et de l’oviducte. Isolement et caractérization de glycopeptides sulfates. Biochim Biophys Acta 320:427–441

    PubMed  CAS  Google Scholar 

  • Pines M, Knopov V, Bar A (1995) Involvement of osteopontin in egg shell formation in the laying chicken. Matrix Biol 14:765–771

    Article  PubMed  CAS  Google Scholar 

  • Pote KG, Ross MD (1991) Each otoconia polymorph has a protein unique to that polymorph. Comp Biochem Physiol B 98:287–295

    Article  PubMed  CAS  Google Scholar 

  • Pote KG, Hauer CR III, Michel H, Shabanowitz J, Hunt DF, Kretsinger RH (1993) Otoconin-22, the major protein of aragonitic frog otoconia, is a homolog of phospholipase A2. Biochemistry 32:5017–5024

    Article  PubMed  CAS  Google Scholar 

  • Quintana C, Sandoz D (1978) Coquille de l’oeuf de caille: étude ultrastructurale et cristallographique. Calcif Tissue Res 25:145–159

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Grajeda JP, Moreno A, Romero A (2004) Crystal structure of Ovocleidin-17, a major protein of the calcified Gallus gallus eggshell. J Biol Chem 279:40876–40881

    Article  PubMed  CAS  Google Scholar 

  • Schüler D (2004) Molecular analysis of a subcellular compartment: the magnetosome membrane in Magnetospirillum gryphiswaldense. Arch Microbiol 181:1–7

    Article  PubMed  CAS  Google Scholar 

  • Söllner C, Burghammer M, Busch-Nentwich E, Berger J, Schwarz H, Riekel C, Nicolson T (2003) Control of crystal size and lattice formation by starmaker in otolith biomineralization. Science 302:282–286

    Article  PubMed  CAS  Google Scholar 

  • Spring S, Lins U, Amann R, Schleifer K-H, Ferreira LCS, Esquivel DMS, Farina M (1998) Phylogenetic affiliation and ultrastructure of uncultured magnetotactic bacteria with unusually large magnetosome. Arch Microbiol 169:136–147

    Article  PubMed  CAS  Google Scholar 

  • Takazoe I, Kurahashi Y, Takuma S (1963) Electron microscopy of intracellular mineralization of oral filamentous microrganisms in vitro. J Dent Res 42:681–685

    PubMed  CAS  Google Scholar 

  • Terepka AR (1963) Organic-inorganic interrelationships in avian egg shell. Exper Cell Res 30:183–192

    Article  CAS  Google Scholar 

  • Theilade J, Fejerskov O, Horsted M (1976) A transmission electron microscopic study of 7-day old bacterial plaque in human tooth fissures. Arch Oral Biol 21:587–598

    Article  PubMed  CAS  Google Scholar 

  • Towe KM, Cifelli R (1967) Wall ultrastructure in the calcareous foraminifera: crystallographic aspects and a model for calcification. J Paleontol 41:742–762

    Google Scholar 

  • van der Wal P, de Jong EW, Westbroek P, de Bruijn WC, Mulder-Stapel AA (1983) Polysaccharide localization, coccolith formation, and Golgi dynamics in the coccolithophorid Hymenomonas carterae. J Ultrastruct Res 85:139–158

    Article  PubMed  Google Scholar 

  • Van Emburg PR, de Jong EW, Daems WT (1986) Immunochemical localization of a polysaccharide from biomineral structures (coccoliths) of Emiliania huxleyi. J Ultrastruct Molec Struct Res 94:246–259

    Article  Google Scholar 

  • Verpy E, Leibovici M, Petit C (1999) Characterization of otoconin-95, the major protein of murine otoconia, provides insights into the formation of these inner ear biominerals. Proc Natl Acad Sci U S A 96:529–534

    Article  PubMed  CAS  Google Scholar 

  • Vigh B, Szel A, Debreceni K, Fejer Z, Manzano e Silva MJ, Vigh-Teichmann I (1998) Comparative histology of pineal calcification. Histol Histopathol 13:851–870

    PubMed  CAS  Google Scholar 

  • Vogel JJ, Ennever J (1971) The role of a lipoprotein in the intracellular hydroxyapatite formation in Bacterionema matruchotii. Clin Orthop Relat Res 78:218–222

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Ford BC, Praul CA, Leach RM Jr (2002) Collagen X expression in oviduct tissue during the different stages of the egg laying cycle. Poult Sci 81:805–808

    PubMed  CAS  Google Scholar 

  • Wang Y, Kowalski PE, Thalmann I, Ornitz DM, Mager DL, Thalmann R (1998) Otoconin-90, the mammalian otoconial matrix protein, contains two domains of homology to secretory phospholipase A2. Proc Natl Acad Sci USA 95:15345–15350

    Article  PubMed  CAS  Google Scholar 

  • Wu T-M, Rodriguez JP, Fink DJ, Carrino DA, Blackwell J, Caplan AI, Heuer AH (1995) Crystallization studies on avian eggshell membranes: implications for the molecular factors controlling eggshell formation. Matrix Biol 14:507–513

    Article  PubMed  CAS  Google Scholar 

  • Young JR, Davis SA, Bown PR, Mann S (1999) Coccolith ultrastructure and biomineralisation. J Struct Biol 126:195–215

    Article  PubMed  CAS  Google Scholar 

  • Zander HA, Hazen SP, Scott DB (1960) Mineralization of dental calculus. Proc Soc Exp Biol (NY) 103:257–260

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Calcifying Matrices: Non-skeletal Structures. In: Biological Calcification. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36013-1_13

Download citation

Publish with us

Policies and ethics