Advertisement

Presentation, Interpretation and Validation of Analytical Results

Chapter
  • 5.7k Downloads

Keywords

Wine Sample Anal Chim Uncertainty Interval Grape Variety Laboratory Information Management System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler B, Schütze P, Will J (1993) Expert system for interpretation of X-ray diffraction spectra. Anal Chim Acta 271:287CrossRefGoogle Scholar
  2. Ahrens H, Läuter J (1974) Mehrdimensionale Varianzanalyse. Akademie-Verlag, BerlinGoogle Scholar
  3. Akin H, Siemes H (1988) Praktische Geostatistik. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  4. Allanic AL, Jezequel JY, Andre JC (1992) Application of neural networks theory to identify two-dimensional üorescence spectra. Anal Chem 64:2618CrossRefGoogle Scholar
  5. Allison PD (2002) Missing data. Sage, Thousand Oaks, CAGoogle Scholar
  6. Andrews DF (1972) Plots of high dimensional data. Biometrics 28:125CrossRefGoogle Scholar
  7. Anker LS, Jurs PC (1992) Prediction of carbon-13 NMR chemical shifts by artificial neural networks. Anal Chem 64:1157CrossRefGoogle Scholar
  8. Anscombe FJ (1973) Graphs in statistical analysis. Am Stat 27:17CrossRefGoogle Scholar
  9. Arnold T, Otto M, Wegscheider W (1994) Interpretation system for automated wavelength dispersive X-ray üorescence spectrometry. Talanta 41:1169CrossRefGoogle Scholar
  10. Artyushkova K, Fulghum JE (2002) Multivariate image analysis methods applied to XPS imaging data sets. Surface Interface Anal 33:185CrossRefGoogle Scholar
  11. Ball JW, Jurs PC (1993) Automated selection of regression models using neural networks for 13 C NMR spectral prediction. Anal Chem 65:505CrossRefGoogle Scholar
  12. Barth A (1993), SpecInfo: an integrated spectroscopic information system. J Chem Inf Comput Sci 33:52CrossRefGoogle Scholar
  13. Benecke C, Grüner T, Kerber A, Laue R, Wieland T (1997) MOLecular structure GEN-eration with MOLGEN, new features and future developments. Fresenius J Anal Chem 359:23CrossRefGoogle Scholar
  14. Boger Z, Karpas Z (1994) Application of neural networks for interpretation of ion mobility and X-ray üorescence spectra. Anal Chim Acta 292:243CrossRefGoogle Scholar
  15. Borszeki J, Kepes J, Koltay L, Sarudi I (1986a) Classification of paprika quality using pattern recognition methods based on elemental composition. Acta Alimentaria 15:93Google Scholar
  16. Borszeki J, Koltay L, Inczedy J, Gegus E (1986b) Untersuchung der Mineralstoffzusammensetzung von Weinen aus Transdanubien und ihre Klassifikation nach Weingegenden. Z Lebensmittelunters Forsch 177:15CrossRefGoogle Scholar
  17. Bremser W, Grzonka M (1991) SpecInfo — a multidimensional spectroscopic interpretation system. Mikrochim Acta 1991/II:483CrossRefGoogle Scholar
  18. Brinton WC (1914) Graphic methods for presenting facts. The Engineering Magazine Company, New York (reprinted 1980, Arno Press, New York)Google Scholar
  19. Buchanan BG, Feigenbaum EA (1978) DENDRAL and Meta-DENDRAL: their applications dimension. Artific Intell 11:5CrossRefGoogle Scholar
  20. Buja A, Cook D, Swayne DF (1996) Interactive high-dimensional data visualization. J Computat Graph Stat 5:78CrossRefGoogle Scholar
  21. Burrough PA (1986) Principles of Geographical Information Systems for Land Resources Assessment. Clarendon Press, OxfordGoogle Scholar
  22. Burrough PA, McDonnell RA (1998) Principles of Geographical Information Systems. Oxford University, New YorkGoogle Scholar
  23. Canzler D, Hellenbrandt M (1992) SPECINFO — The spectroscopic information system on STN International. Fresenius J Anal Chem 344:167CrossRefGoogle Scholar
  24. Cherition D, Tarjan RE (1976) Finding minimum spanning trees. SIAM J Computing 5:724CrossRefGoogle Scholar
  25. Chernoff H (1973) The use of faces to represent points in k-dimensional space graphically. J Am Statist Assoc 68:361CrossRefGoogle Scholar
  26. Coomans D, Massart DL, Broeckaert I (1981) Potential methods in pattern recognition. A combination of ALLOC and statistical linear discriminant analysis. Anal Chim Acta 133:215CrossRefGoogle Scholar
  27. Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Transact IT-13:21Google Scholar
  28. Currie LA (1992) In pursuit of accuracy: nomenclature, assumtions, and standards. Pure Appl Chem 64:455Google Scholar
  29. Currie LA (1995) IUPAC, Analytical Chemistry Division, Commission on Analytical Nomenclature: Nomenclature in evaluation of analytical methods including detection and quantification capabilities. Pure Appl Chem 67:1699Google Scholar
  30. Currie LA (1997) Detection: international update, and some emerging di-lemmas involving calibration, the blank, and multiple detection decisions. Chemometrics Intell Lab Syst 37:151CrossRefGoogle Scholar
  31. Danzer K (1989) Robuste Statistik in der analytischen Chemie. Fresenius Z Anal Chem 335:869CrossRefGoogle Scholar
  32. Danzer K, De la Calle D, Thiel G, Reichenbächer M (1999) Classification of wine samples according to origin and grape varieties on the basis of inorganic and organic trace analysis. Am Lab 31:26Google Scholar
  33. Danzer K, Florian K, Singer R, Mäurer, F, Abo-Bakr El Nady M, Zimmer K (1987) Investigation of the origin of archaeological glass artefacts by means of pattern recognition. Anal Chim Acta 201:289CrossRefGoogle Scholar
  34. Danzer K, Hobert H, Fischbacher C, Jagemann K-U (2001) Chemometrik. Grundlagen und Anwendungen. Springer, Berlin Heidelberg New YorkGoogle Scholar
  35. Danzer K, Singer R, Mäurer F, Florian K, Zimmer K (1984) Mehrdimensionale Varianzund Diskriminanzanalyse spektrographischer Daten von Glasperlenfunden. Fresenius Z Anal Chem 318:517CrossRefGoogle Scholar
  36. Danzer K, Wank U, Wienke D (1991) An expert system for the evaluation and interpretation of interlaboratory comparisons. Chemom Intell Lab Syst 12:69CrossRefGoogle Scholar
  37. De la Calle D, Reichenbächer M, Danzer K, Hurlbeck C, Bartzsch C, Feller K-H (1998) Analysis of wine bouquet components using headspace solid-phase microextractioncapillary gas chromatography. J High Resol Chromatogr 21:373CrossRefGoogle Scholar
  38. Derde MP, Buydens L, Guns C, Massart DL, Hopke PK (1987) The use of rule building systems for the classification of analytical data Anal Chem 59:1868CrossRefGoogle Scholar
  39. Derde MP, Massart DL (1986) UNEQ: a disjoint modelling technique for pattern recognition besed on normal distribution. Anal Chim Acta 184:33CrossRefGoogle Scholar
  40. Derde MP, Massart DL (1988) Comparison of the performance of the class modelling techniques UNEQ, SIMCA and PRIMA. Chemom Intell Lab Syst 4:65CrossRefGoogle Scholar
  41. Dillon WR, Goldstein M (1984) Multivariate analysis. Methods and Applications. Wiley, New YorkGoogle Scholar
  42. du Toit SHC, Steyn AWG, Stumpf RH (1986) Graphical exploratory data analysis. Springer, Berlin Heidelberg New YorkGoogle Scholar
  43. Duewer DL, Kowalski BR (1975) Forensic data analysis by pattern recognition. Categorization of white bond papers by elemental composition. Anal Chem 47:526CrossRefGoogle Scholar
  44. Ehrlich G, Danzer K (2006) Nachweisvermögen von Analysenverfahren. Objektive Bewertung und Ergebnisinterpretation. Springer, Berlin Heidelberg New YorkGoogle Scholar
  45. Ehrlich G, Danzer K, Liebich V (1979) Allgemeine Grundlagen der Verteilungsanalytik. Tagungsber Techn Hochsch Karl-Marx-Stadt: 2. Tagung Festkörperanalytik 1978. Plenarund Hauptvorträge 1:69Google Scholar
  46. Einax J, Danzer K (1989) Die Anwendung der Faktorenanalyse zur Charakterisierung der Quellen staubförmiger Immissionen. Staub Reinh Luft 49:53Google Scholar
  47. Einax JW, Zwanziger HW, Geiß S (1997) Chemometrics in Environmental Analysis. VCH, WeinheimCrossRefGoogle Scholar
  48. Elyashberg ME, Martirosian ER, Karasev YuZ, Thiele H, Somberg H (1997) X-Pert: a user-friendly expert system for molecular structure elucidation by spectral methods. Anal Chim Acta 337:265CrossRefGoogle Scholar
  49. Ferguson IF (1989) Auger microprobe analysis. Hilger, BristolGoogle Scholar
  50. Fischbacher C, Jagemann K-U, Danzer K, Müller UA, Mertes B (1995) Non-invasive blood glucose monitoring by chemometrical evaluation of NIR-spectra. 24th EAS (Eastern Analytical Symposium), Somerset, NJGoogle Scholar
  51. Forina M, Armanino C (1982) Eigenvector projection and simplified non-linear mapping of fatty acid content of Italian olive oils. Ann Chim [Rome] 72:127Google Scholar
  52. Frank IE (1988) DASCO: a new classification method. Chemom Intell Lab Syst 4:215CrossRefGoogle Scholar
  53. Frank IE (1989) Classification models: discriminant analysis, SIMCA, CART. Chemom Intell Lab Syst 5:247CrossRefGoogle Scholar
  54. Frank IE, Friedman JH (1989) Classification: oldtimers and newcomers. J Chemom 3:463CrossRefGoogle Scholar
  55. Frank IE, Todeschini R (1994) The data analysis handbook. Elsevier, AmsterdamGoogle Scholar
  56. Fresenius CR (1841) Anleitung zur qualitativen chemischen Analyse. Vieweg, BraunschweigGoogle Scholar
  57. Fuchs GM, Prohaska T, Friedbacher G, Hutter H, Grasserbauer M (1995) Maximum entropy deconvolution of AFM and STM images. Fresenius J Anal Chem 351:143CrossRefGoogle Scholar
  58. Geisler G (1999) Bestimmung von Spuren-und Ultraspurenelementen in Wein. Diploma Thesis, Friedrich Schiller Univerity of JenaGoogle Scholar
  59. Geladi P, Bengtsson E, Esbensen K, Grahn H (1992a) Image analysis in chemistry. I. Properties of images, greylevel operations, the multivariate image. Trends Anal Chem 11:41CrossRefGoogle Scholar
  60. Geladi P, Grahn H (1996) Multivariate image analysis. Wiley, ChichesterGoogle Scholar
  61. Geladi P, Grahn H, Esbensen K, Bengtsson E (1992b) Image analysis in chemistry. II. Multivariate image analysis. Trends Anal Chem 11:121CrossRefGoogle Scholar
  62. Hampel FR, Roncetti EM, Rousseeuw PJ, Stahel WA (1986) Robust statistics: the approach based on influence functions. Wiley, New YorkGoogle Scholar
  63. Helsel DR (1990) Less than obvious: statistical treatment of data below the detection limit. Environm Sci Technol 24:1756CrossRefGoogle Scholar
  64. Hibbert DB (1993) Genetic algorithms in chemistry. Chemom Intell Lab Syst 19:277CrossRefGoogle Scholar
  65. Horwitz W (1994) Nomenclature of interlaboratory analytical studies. Pure Appl Chem 66:1903Google Scholar
  66. Howell DC (2002) Treatment of missing data. www.uvm.edu/~dhowell/StatPages/More Stuff/Missing Data/Missing.htmlGoogle Scholar
  67. Huber PJ (1981) Robust statistics. Wiley, New YorkCrossRefGoogle Scholar
  68. Huberty CJ (1994) Applied discriminant analysis. Wiley, New YorkGoogle Scholar
  69. Hutter H, Brunner C, Nikolov SG, Mittermayr C, Grasserbauer M (1996) Image surface spectroscopy for two and three dimensional characterization of materials. Fresenius J Anal Chem 355:585Google Scholar
  70. ISO Guide 33 (1989) Uses of certified reference materials. GenevaGoogle Scholar
  71. ISO/REMCO N 280 (1993) Proficiency testing of chemical analytical laboratories. GenevaGoogle Scholar
  72. IUPAC (1993) Analytical Chemistry Division, Commission on General Aspects of Analytical Chemistry: The International Harmonized Protocol for the Proficience Testing of (Chemical) Analytical Laboratories. Pure Appl Chem 65:2123Google Scholar
  73. IUPAC (1994) Analytical Chemistry Division, Commission on General Aspects of Analytical Chemistry: Nomenclature of interlaboratory analytical studies, prepared for publication by W Horwitz. Pure Appl Chem 66:1903Google Scholar
  74. IUPAC Orange Book (1997, 2000) — printed version: Compendium of analytical nomenclature (definitive rules 1997); see Inczédy et al. (1997) — web version (as from 2000): www.iupac.org/publications/analytical compendium/Google Scholar
  75. Janssens K, van Espen P (1986) Interpretation system for automated wavelength dispersive X-ray úorescence spectrometry. Anal Chim Acta 184:117CrossRefGoogle Scholar
  76. Juricskay I, Veress GE (1985) PRIMA: a new pattern recognition method. Anal Chim Acta 171:61CrossRefGoogle Scholar
  77. Kaiser H (1965) Zum Problem der Nachweisgrenze. Fresenius Z Anal Chem 209:1CrossRefGoogle Scholar
  78. Kaiser H (1966) Zur Definition der Nachweisgrenze, der Garantiegrenze und der dabei benutzten Begriffe. Fresenius Z Anal Chem 216:80CrossRefGoogle Scholar
  79. Kaiser H, Specker H (1956) Bewertung und Vergleich von Analysenverfahren. Fresenius Z Anal Chem 149:46CrossRefGoogle Scholar
  80. Kleiner B, Hartigan JA (1981) Representing points in many dimensions by trees and castles. J Am Stat Assoc 76:260CrossRefGoogle Scholar
  81. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59CrossRefGoogle Scholar
  82. Kohonen T (1984) Self-organization and associative memory. Springer, Berlin Heidelberg New YorkGoogle Scholar
  83. Kruskal JB (1956) On the shortest spanning subtree and the traveling salesman problem. Proc Am Math Soc 7:48CrossRefGoogle Scholar
  84. Lapitajs G, Klinkner R: Marktúberblick LIMS. http://www.analytik.de/Dokumente/Artikel/LIMS.htmlGoogle Scholar
  85. Lawn RE, Thompson M, Walker RF (1993) Proficiency testing in analytical chemistry. Royal Society of Chemistry, LondonGoogle Scholar
  86. Li T-H, Lucasius CB, Kateman G (1992) Optimization of calibration data with the dynamic genetic algorithm. Anal Chim Acta 268:123CrossRefGoogle Scholar
  87. Li-Xian Sun, Danzer K, Thiel G (1997) Classification of wine samples by means of artificial neural networks and discrimination analytical methods. Fresenius J Anal Chem 359:143CrossRefGoogle Scholar
  88. Limsource: http://www.limsource.comGoogle Scholar
  89. Little RJA, Rubin DB (1987) Statistical analysis with mission data. Wiley, New YorkGoogle Scholar
  90. Long GL, Winefordner JD (1983) Limit of detection. A closer look at the IUPAC definition. Anal Chem 55:712AGoogle Scholar
  91. Lucasius CB, Kateman G (1993) Understanding and using genetic algorithms. Part 1. Concepts, properties and context. Chemom Intell Lab Syst 19:1CrossRefGoogle Scholar
  92. Massart DL, Vandeginste BGM, Deming SN, Michotte Y, Kaufman L (1988) Chemometrics — A textbook. Elsevier, AmsterdamGoogle Scholar
  93. Nagel M, Brenner A, Ostermann R, Henschke K (1996) Graphische Datenanalyse. Fischer, StuttgartGoogle Scholar
  94. Neitzel V (1996) To the problem of processing values below the limit of determination. Vom Wasser 87:223Google Scholar
  95. Neudert R, Penk M (1996) Enhanced structure elucidation. J Chem Inf Comput Sci 36:244CrossRefGoogle Scholar
  96. Nilsen CL (1996) Managing the analytical laboratory plain and simple. CRC, Interpharm Press, Buffalo Grove, ILGoogle Scholar
  97. Otto M (1998) Chemometrics. Statistics and computer application in analytical chemistry. VCH, WeinheimGoogle Scholar
  98. Prichard E, Green J, Houlgate P, Miller J, Newman E, Phillips G, Rowley A (2001) Analytical measurement terminology — handbook of terms used in quality assurance of analytical measurement. LGC, Teddington, Royal Society of Chemistry, CambridgeGoogle Scholar
  99. Prim RC (1957) Shortest connection networks and some generalisations. Bell Syst Techn J 36:1389Google Scholar
  100. Rabiner LR, Gold B (1975) Theory and application of digital signal processing. Prentice Hall, New JerseyGoogle Scholar
  101. Robb EW, Munk ME (1990) A neural network approach to infrared spectrum interpretation. Mikrochim Acta [Wien] 1990/I:131CrossRefGoogle Scholar
  102. Rousseeuw PJ, Leroy AM (1987) Robust regression and outlier detection. Wiley, New YorkCrossRefGoogle Scholar
  103. Rüdenauer FG (1989) Multidimensional image acquisition and processing in surface analysis. Fresenius Z Anal Chem 333:308CrossRefGoogle Scholar
  104. Rüdenauer FG, Steiger W (1986) Messung der räumlich 3-dimensionalen Elementverteilung in Festkörpern mit Hilfe von SIMS. Wiss Beitr FSU Jena: 3. Tagung COMPANA’ 85, Computereinsatz in der Analytik, p 115Google Scholar
  105. Saxberg BEH, Duewer DL, Booker JL, Kowalski BR (1978) Pattern recognition and blind assay techniques applied to forensic separation of whiskey. Anal Chim Acta 103:201CrossRefGoogle Scholar
  106. Schuur J (1997) Spektren-Interpretation und-Verwaltung mit SpecInfo. Nachr Chem Tech Lab 45:401Google Scholar
  107. Sharaf MA, Ilman DL, Kowalski BR (1986) Chemometrics. Wiley, New YorkGoogle Scholar
  108. Stanley WD (1975) Digital signal processing. Reston Publishing, Reston, VAGoogle Scholar
  109. Stonham TJ, Aleksander I, Camp M, Pike WT, Shaw MA (1975) Classification of mass spectra using adaptive digital learning networks. Anal Chem 47:1817CrossRefGoogle Scholar
  110. Thiel G, Geisler G, Blechschmidt I, Danzer K (2004) Determination of trace elements in wines and classification according to their provenance. Anal Bioanal Chem 378:1630CrossRefGoogle Scholar
  111. Thompson M, Wood R (1993) International harmonized protocol for proficiency testing of (chemical) analytical laboratories. J AOAC Intern 76:926Google Scholar
  112. Tukey JW (1962) The future of data analysis. Ann Math Stat 33:1; 81Google Scholar
  113. Tukey JW (1977) Exploratory data analysis. Addison-Wesley, Reading, MAGoogle Scholar
  114. Tusar M, Rius XF, Zupan J (1991) Neural networks in chemistry. Mitt-bl GDCh, Fachgr CIC 19:72Google Scholar
  115. van Leeuwen JA, Buydens LMC, Vandeginste BGM, Kateman G, Schoenmakers PJ, Mulholland M (1991) RES, an expert system for the set-up and interpretation of a ruggedness test in HPLC method validation. Chemom Intell Lab Syst 10:337; 11:37, 161CrossRefGoogle Scholar
  116. Wehrens R (1994) Hybridisation of expert systems in chemometrics. In: LMC Buydens, WJ Melssen (eds) Chemometrics. Exploring and exploiting chemical information. Katholieke Universiteit Nijmegen, p 113Google Scholar
  117. Wehrens R, Lucasius C, Buydens LMC, Kateman G (1993a) HIPS, a hybrid self-adapting expert system for NMR spectrum interpretation using genetic algorithms. Anal Chim Acta 277:313CrossRefGoogle Scholar
  118. Wehrens R, van Hoof P, Buydens LMC, Kateman G, Vossen M, Mulder WH, Bakker T (1993b) Sampling of aquatic sediments. The design of a decision-support system and a case study. Anal Chim Acta 271:11CrossRefGoogle Scholar
  119. Weissmantel C, Lenk R, Forker W, Ludloff R, Hoppe J (eds) (1968) Kleine Enzyklopädie Atom — Struktur der Materie. Bibliographisches Institut, Leipzig (Tafel 36)Google Scholar
  120. Wickes BT, Kim Y, Castner DG (2003) Denoising and multivariate analysis of time-of-íght SIMS images. Surface Interface Anal 35:640CrossRefGoogle Scholar
  121. Wienke D, Wank U, Wagner M, Danzer K (1991) MULTIVAR, PLANEX, INTERLAB — from a collection of algorithms to an expert system: Statistical software written from chemists for chemists. In: Gmeling J (ed) Software development in chemistry 5, Springer, Berlin Heidelberg New York, p 113Google Scholar
  122. Wold S (1976) Pattern recognition by means of disjoint principal component models. Pattern Recogn 8:127CrossRefGoogle Scholar
  123. Wolkenstein M, Hutter H, Nikolov SG, Grasserbauer M (1997a) Improvement of SIMS image classification by means of de-noising. Fresenius J Anal Chem 357:783CrossRefGoogle Scholar
  124. Wolkenstein M, Hutter H, Nikolov SG, Schnitz I, Grasserbauer M (1997b) Comparison of wavelet filtering with well-known techniques for EPMA image de-noising. J Trace Microprobe Techn 15:33Google Scholar
  125. Wünsch G, Gansen M (1989) Anwendbarkeit und Anwendung von Expertensystemen in der Analytik. Fresenius Z Anal Chem 333:607CrossRefGoogle Scholar
  126. Wythoff BJ, Levine SP, Tomellini A (1990) Spectral peak verification and recognition using a multilayered neural network. Anal Chem 62:2702CrossRefGoogle Scholar
  127. Zupan J, Gasteiger J (1993) Neural networks for chemists. An introduction. VCH, WeinheimGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Personalised recommendations