Advertisement

Calibration in Analytical Chemistry

Chapter

Keywords

Partial Little Square Calibration Model Weight Linear Little Square Calibration Function Multivariate Calibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer G, Wegscheider W, Ortner HM (1991a) Limits of detection in multivariate calibration. Fresenius J Anal Chem 340:135CrossRefGoogle Scholar
  2. Bauer G, Wegscheider W, Ortner HM (1991b) Selectivity and error estimates in multivariate calibration: application to sequential ICP-OES. Spectrochim Acta 46B:1185Google Scholar
  3. Burns DT, Danzer K, Townshend A (2002) IUPAC, Analytical Chemistry Division, Commission on General Aspects of Analytical Chemistry: Use of the terms “recovery” and “apparent recovery” in analytical procedures (IUPAC Recommendations 2002). Pure Appl Chem 74:2201Google Scholar
  4. Centner V, Massart DL, de Jong S (1998) Inverse calibration predicts better than classical calibration. Fresenius J Anal Chem 361:2CrossRefGoogle Scholar
  5. Currie LA (1995) IUPAC, Analytical Chemistry Division, Commission on Analytical Nomenclature: Nomenclature in evaluation of analytical methods including detection and quantification capabilities. Pure Appl Chem 67:1699Google Scholar
  6. Danzer K (1989) Robuste Statistik in der analytischen Chemie. Fresenius Z Anal Chem 335:869CrossRefGoogle Scholar
  7. Danzer K (1990) Problems of calibration in trace-, in situ-micro-and surface analysis. Fresenius J Anal Chem 337:794CrossRefGoogle Scholar
  8. Danzer K (1995) Calibration — a multidimensional approach. Fresenius J Anal Chem 351:3CrossRefGoogle Scholar
  9. Danzer K (2001) Selectivity and specificity in analytical chemistry. General considerations and attempt of a definition and quantification. Fresenius J Anal Chem 369:397CrossRefGoogle Scholar
  10. Danzer K, Currie LA (1998) IUPAC, Analytical Chemistry Division, Commission on General Aspects of Analytical Chemistry: Guidelines for calibration in analytical chemistry. Part 1. Fundamentals and single component calibration (recommendations 1998). Pure Appl Chem 70:993Google Scholar
  11. Danzer K, Fischbacher C, Jagemann K-U, Reichelt KJ (1998) Near-infrared diffuse reflection spectroscopy for non-invasive blood-glucose monitoring. LEOS Newslett 12(2):9Google Scholar
  12. Danzer K, Hobert H, Fischbacher C, Jagemann K-U (2001) Chemometrik. Grundlagen und Anwendungen. Springer, Berlin Heidelberg New YorkGoogle Scholar
  13. Danzer K, Otto M, Currie LA (2004) IUPAC, Analytical Chemistry Division, Commission on General Aspects of Analytical Chemistry: Guidelines for calibration in analytical chemistry. Part 2. Multispecies calibration. (IUPAC Technical Report), Pure Appl Chem 76:1215Google Scholar
  14. Danzer K, Schrön W, Dreßler B, Jagemann K-U (1998) Matrix sensitivity of solid sampling AAS. Determination of zinc in geological samples. Fresenius J Anal Chem 361:710CrossRefGoogle Scholar
  15. Danzer K, Venth K (1994) Multisignal calibration in spark-and ICP-OES. Fresenius J Anal Chem 350:339CrossRefGoogle Scholar
  16. Danzer K, Wagner M (1993) Multisignal calibration in optical emission spectroscopy. Fresenius J Anal Chem 346:520CrossRefGoogle Scholar
  17. Danzer K, Wagner M, Fischbacher C (1995) Calibration by orthogonal and common least squares — theoretical and practical aspects. Fresenius J Anal Chem 352:407CrossRefGoogle Scholar
  18. Danzer K, Wienke D, Wagner M (1991) Application of chemometric principles for evaluation of emission spectrographic data. Acta Cim Hungar 128:623Google Scholar
  19. Deming SN, Morgan SL (1993) Experimental design: a chemometric approach, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  20. Dillon WR, Goldstein M (1984) Multivariate analysis methods and applications. Wiley, New YorkGoogle Scholar
  21. Draper NR, Smith H (1981) Applied regression techniques, 2nd edn. Wiley, New YorkGoogle Scholar
  22. Edgeworth FY (1887) On observations relating to several quantities. Hermathena 6:279Google Scholar
  23. Eckschlager K, Danzer K (1994) Information theory in analytical chemistry. Wiley, New YorkGoogle Scholar
  24. Efron B (1982) The jackknife, the bootstrap and other resampling techniques. Society for Industrial and Applied Mathematics, Philadelphia, PAGoogle Scholar
  25. Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman and Hall, LondonGoogle Scholar
  26. Ehrlich G, Danzer K (2006) Nachweisvermögen von Analysenverfahren — Objektive Bewertung und Ergebnisinterpretation. Springer, Berlin Heidelberg New YorkGoogle Scholar
  27. Faber K, Kowalski BR (1997a) Improved prediction error estimates for multivariate calibration by correcting for the measurement error in the reference values. Appl Spectrosc 51:660CrossRefGoogle Scholar
  28. Faber K, Kowalski BR (1997b) Propagation of measurement errors for the validation of predictions obtained by principal component regression and partial least squares. J Chemom 11:181CrossRefGoogle Scholar
  29. Fischbacher C, Jagemann K-U, Danzer K, Müller UA, Mertes B (1995) Non-invasive blood glucose monitoring by chemometrical evaluation of NIR-spectra. Twenty-fourth EAS (Eastern Analytical Symposium), Somerset, NJ, 12–16.11.1995Google Scholar
  30. Fischbacher C, Jagemann K-U, Danzer K, Müller UA, Papenkordt L, Schüler J (1997) Enhancing calibration models for non-invasive near-infrared spectroscopical blood glucose determination. Fresenius J Anal Chem 359:78CrossRefGoogle Scholar
  31. Flury B (1988) Common principal components and related multivariate models. Wiley, New YorkGoogle Scholar
  32. Frank IE, Todeschini R (1994) The data analysis handbook. Elsevier, AmsterdamGoogle Scholar
  33. Garden JS, Mitchell DG, Mills WH (1980) Nonconstant variances regression techniques for calibration-curve-based analysis. Anal Chem 52:2310CrossRefGoogle Scholar
  34. Hampel FR (1980) Robuste Schätzungen: Ein anwendungsorientierter Überblick. Biometr J 22:3Google Scholar
  35. Hampel FR, Ronchetti EM, Rousseeuw PJ, Stahel W (1986) Robust statistics. The approach based on influence functions. Wiley, New YorkGoogle Scholar
  36. Hässelbarth W (1995) Traceability of measurement and calibration in chemical analysis. Fresenius J Anal Chem 352:400CrossRefGoogle Scholar
  37. Høskuldsson A (1988) PLS regression methods. J Chemom 2:211CrossRefGoogle Scholar
  38. Huber PJ (1981) Robust statistics. Wiley, New YorkCrossRefGoogle Scholar
  39. Hulanicki A (1995) IUPAC, Analytical Chemistry Division, Commission on General Aspects of Analytical Chemistry: Absolute methods in analytical chemistry. Pure Appl Chem 67:1905Google Scholar
  40. Inczédy J, Lengyiel JT, Ure AM, Geleneser A, Hulanicki A (eds) (1997) Compendium of analytical nomenclature, 3rd edn (IUPAC Orange Book). Blackwell, OxfordGoogle Scholar
  41. ISO (1993), International Organization for Standardization, Guide to the expression of uncertainty in measurement. GenevaGoogle Scholar
  42. IUPAC Orange Book (1997, 2000) — printed version: Compendium of analytical nomenclature (Definitive Rules 1997); see Inczédy et al (1997) — web version (as from 2000): www.iupac.org/publications/analytical compendium/Google Scholar
  43. Jagemann K-U, Fischbacher C, Danzer K, Müller UA, Mertes B (1995) Application of near-infrared spectroscopy for non-invasive determination of blood/tissue glucose using neural networks. Z Physikal Chem 191:179Google Scholar
  44. Jagemann K-U (1998) Neuronale Netze in der Analytik, in: Günzler H, Bahadir AM, Danzer K, Engewald W, Fresenius W, Galensa R, Huber W, Linscheid M, Schwedt G, Tölg G, Analytiker-Taschenbuch 19:75Google Scholar
  45. Kaiser H (1972) Zur Definition von Selektivität, Spezifität und Empfindlichkeit von Analysenverfahren. Fresenius Z Anal Chem 260:252CrossRefGoogle Scholar
  46. Lorber A, Kowalski BR (1988) Estimation of prediction error for multivariate calibration. J Chemometrics 2:93CrossRefGoogle Scholar
  47. Malinowski ER, Howery DG (1980) Factor analysis in chemistry. Wiley, New YorkGoogle Scholar
  48. Mandel J (1964) The statistical analysis of experimental data. Wiley, New YorkGoogle Scholar
  49. Mandel J (1984) Fitting straight lines when both variables are subject to error. J Quality Technol 16:1Google Scholar
  50. Manne R (1987) Analysis of two partial-least-squares algorithms for multivariate calibration. Chemom Intell Lab Syst 2:187CrossRefGoogle Scholar
  51. Martens H, Næs T (1989) Multivariate calibration. Wiley, New YorkGoogle Scholar
  52. Moore EH (1920) On the reciprocal of the general algebraic matrix. Bull Amer Math Soc 26:394Google Scholar
  53. Morgan E (1991) Chemometrics: experimental design. Wiley, Chichester, UKGoogle Scholar
  54. Müller UA, Mertes B, Fischbacher C, Jagemann K-U, Danzer K (1997) Non-invasive blood glucose monitoring by means of near infrared spectroscopy: methods for Improving the reliability of the calibration models. Int J Artific Organs 20:285Google Scholar
  55. Nimmerfall G, Schrön W (2001) Direct solid sample analysis of geological samples with SS-GF-AAS and use of 3D calibration. Fresenius J Anal Chem 370:760CrossRefGoogle Scholar
  56. Otto M, Bandemer H (1986) Calibration with imprecise signals and concentrations based on fuzzy theory. Chemom Intell Lab Syst 1:71CrossRefGoogle Scholar
  57. Penrose R (1955) A generalized inverse for matrices. Proc Cambridge Phil Soc 51:406Google Scholar
  58. Rousseeuw PJ, Leroy AM (1987) Robust regression and outlier detection. Wiley, New YorkCrossRefGoogle Scholar
  59. Sachs L (1992) Angewandte Statistik. Springer, Berlin Heidelberg New YorkGoogle Scholar
  60. Sharaf MA, Illman DL, Kowalski BR (1986) Chemometrics. Wiley, New YorkGoogle Scholar
  61. Statistica for Windows 4.5 (1993) Statististical Software IncGoogle Scholar
  62. Venth K, Danzer K, Kudermann G, Blaufuß K-H (1996) Multisignal evaluation in IPC-MS. Determination of trace elements in Mo-Zr-alloys. Fresenius J Anal Chem 354:811Google Scholar
  63. Vessman J, Stefan RI, van Staden JF, Danzer K, Lindner W, Burns DT, Fajgelj A, Müller H (2001) IUPAC, Analytical Chemistry Division, Commission on General Aspects of Analytical Chemistry: Selectivity in analytical chemistry (IUPAC recommendations 2001). Pure Appl Chem 73:1381Google Scholar
  64. Wald A (1940) The fitting of straight lines if both variables are subject to error. Ann Math Statist 11:284Google Scholar
  65. Wegscheider W (1996) Validation of analytical methods. In: Günzler H (ed) Accreditation and quality assurance in analytical chemistry. Springer, Berlin Heidelberg New YorkGoogle Scholar
  66. Wold S (1974) Spline functions in data analysis. Technometrics 16:1CrossRefGoogle Scholar
  67. Wythoff BJ (1993) Backpropagation neural networks. A tutorial. Chemom Intell Lab Syst 18:115CrossRefGoogle Scholar
  68. Zell A (1994) Simulation neuronaler Netze. Addison-Wesley, BonnGoogle Scholar
  69. Zupan J, Gasteiger J (1991) Neural networks: a new method for solving chemical problems or just a passing phase? Anal Chim Acta 248:1CrossRefGoogle Scholar
  70. Zupan J, Gasteiger J (1993) Neural networks for chemists. VCH, WeinheimGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Personalised recommendations