Studying Influences and Optimizing Analytical Procedures



Genetic Algorithm Response Surface Simulated Annealing Anal Chim Steep Ascent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahrens H (1967) Varianzanalyse. Akademie-Verlag, BerlinGoogle Scholar
  2. Box GPE (1954) The exploration and exploitation of response surfaces: some general considerations and examples. Biometrics 10:16CrossRefGoogle Scholar
  3. Box GEP (1957) Evolutionary operation: a method for increasing industrial productivity. Appl Statist 6:81CrossRefGoogle Scholar
  4. Box GEP, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2:445CrossRefGoogle Scholar
  5. Box GEP, Draper NR (1969) Evolutionary operation. Wiley, New YorkGoogle Scholar
  6. Box GPE, Wilson KB (1951) On the experimental attainment of optimum conditions. J R Statist Soc B 13:1Google Scholar
  7. Danzer K, Marx G (1979) Application of the two-dimensional variance analysis for the investigation of homogeneity of solids. Anal Chim Acta 110:145CrossRefGoogle Scholar
  8. Danzer K, Hobert H, Fischbacher C, Jagemann K-U (2001) Chemometrik — Grundlagen und Anwendungen. Springer, Berlin Heidelberg New YorkGoogle Scholar
  9. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonGoogle Scholar
  10. Davis L (ed) (1991) Handbook of genetic algorithms. Part I. A genetic algorithms tutorial. Van Nostrand Reinhold, New YorkGoogle Scholar
  11. Dixon W, Massey FJ (1983) Introduction to statistical analysis. McGraw-Hill, New YorkGoogle Scholar
  12. Dunn OJ, Clark VA (1974) Applied statistics-analysis of variance and regression. Wiley, New YorkGoogle Scholar
  13. Eisenhart C (1947) The assumptions underlying the analysis of variance. Biometrics 3:1CrossRefGoogle Scholar
  14. Fischbacher C, Jagemann K-U, Danzer K, Müller UA, Mertes B, Papenkorth L, Schüler J (1994/96) Unpublished results Google Scholar
  15. Fischbacher C, Jagemann K-U, Danzer K, Müller UA, Mertes B (1995) Non-invasive blood glucose monitoring by chemometrical evaluation of NIR-spectra. 24th EAS (Eastern Analytical Symposium), Somerset, NJ, November 12–16Google Scholar
  16. Fisher RA (1925) Theory of statistical estimation. Proc Cambridge Phil Soc 22:700Google Scholar
  17. Fisher RA (1935) The design of experiments. Oliver & Boyd, Edinburgh (7th edn 1960; 9th edn 1971, Hafner Press, New York)Google Scholar
  18. Frank IE, Todeschini R (1994) The data analysis handbook. Elsevier, AmsterdamGoogle Scholar
  19. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, New YorkGoogle Scholar
  20. Graf U, Henning H-U, Stange K, Wilrich P-Th (1987) Formeln und Tabellen der angewandten mathematischen Statistik. Springer, Berlin Heidelberg New York (3. Aufl)Google Scholar
  21. Hald A (1960) Statistical tables and formulas. Wiley, New YorkGoogle Scholar
  22. Holland JH (1975) Adaption in natural and artifial systems. University of Michigan Press, Ann Arbor, MI. Revised ed (1992) MIT Press, Cambridge, MAGoogle Scholar
  23. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Nat Acad Sci USA 79:2554CrossRefGoogle Scholar
  24. Kalivas JH (1992) Optimization using variations of simulated annealing. Chemom Intell Lab Syst 15:1CrossRefGoogle Scholar
  25. Kateman G (1990) Evolutions in chemometrics. Analyst 115:487CrossRefGoogle Scholar
  26. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671CrossRefGoogle Scholar
  27. Lee BW, Sheu BJ (1990) Combinatorial optimization using competitive Hopfield neural network. Proc Internat Joint Conf Neural Networks II: 627, Washington, DCGoogle Scholar
  28. Lucasius, CB (1994) Evolutionary computation: a distinctive form of natural computation with chemometric potential. Chapter 9 in: Buydens LM, Melssen WJ: Chemometrics. Exploring and exploiting chemical information. Katholieke Universiteit NijmegenGoogle Scholar
  29. Lucasius CB, Kateman G (1993) Understanding and using genetic algorithms. Part 1. Concepts, properties and context. Chemom Intell Lab Syst 19:1CrossRefGoogle Scholar
  30. Lucasius CB, Blommers MJJ, Buydens LMC, Kateman G (1991) A genetic algotithm for conformational analysis of DNA. In: Davis L (ed) Handbook of genetic algorithms. Van Nostrand Reinhold, New YorkGoogle Scholar
  31. Mandel J (1961) Non-additivity in two-way analysis of variance. J Am Statist Assoc 56:878CrossRefGoogle Scholar
  32. Neave HR (1981) Elementary statistical tables. Allen Unwin, LondonGoogle Scholar
  33. Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33:305CrossRefGoogle Scholar
  34. Rechenberg I (1973) Evolutionsstrategie. Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, StuttgartGoogle Scholar
  35. Sachs L (1992) Angewandte Statistik, 7th edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  36. Scheffé H (1961) The analysis of variance. Wiley, New YorkGoogle Scholar
  37. Sharaf MA, Illman DL, Kowalski BR (1986) Chemometrics. Wiley, New YorkGoogle Scholar
  38. van Laarhoven PJM, Aarts EHL (1987) Simulated annealing: theory and applications. Reidel, DordrechtGoogle Scholar
  39. Wegscheider W(1996) Validation of analytical methods. In: H. Günzler (ed) Accreditation and quality assurance in analytical chemistry. Springer, Berlin Heidelberg New YorkGoogle Scholar
  40. Wienke D, Lucasius C, Kateman G (1992) Multicriteria target vector optimization of analytical procedures using a genetic algorithm. Part I. Theory, numerical simulations and application to atomic emission spectroscopy. Anal Chim Acta 265:211CrossRefGoogle Scholar
  41. Wienke D, Lucasius C, Ehrlich M, Kateman G (1993) Multicriteria target vector optimization of analytical procedures using a genetic algorithm. Part II. Polyoptimization of the photometric calibration graph of dry glucose sensors for quantitative clinical analysis. Anal Chim Acta 271:253CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Personalised recommendations