Analytical Chemistry pp 101-122 | Cite as
Studying Influences and Optimizing Analytical Procedures
Chapter
- 5.6k Downloads
Keywords
Genetic Algorithm Response Surface Simulated Annealing Anal Chim Steep Ascent
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- Ahrens H (1967) Varianzanalyse. Akademie-Verlag, BerlinGoogle Scholar
- Box GPE (1954) The exploration and exploitation of response surfaces: some general considerations and examples. Biometrics 10:16CrossRefGoogle Scholar
- Box GEP (1957) Evolutionary operation: a method for increasing industrial productivity. Appl Statist 6:81CrossRefGoogle Scholar
- Box GEP, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2:445CrossRefGoogle Scholar
- Box GEP, Draper NR (1969) Evolutionary operation. Wiley, New YorkGoogle Scholar
- Box GPE, Wilson KB (1951) On the experimental attainment of optimum conditions. J R Statist Soc B 13:1Google Scholar
- Danzer K, Marx G (1979) Application of the two-dimensional variance analysis for the investigation of homogeneity of solids. Anal Chim Acta 110:145CrossRefGoogle Scholar
- Danzer K, Hobert H, Fischbacher C, Jagemann K-U (2001) Chemometrik — Grundlagen und Anwendungen. Springer, Berlin Heidelberg New YorkGoogle Scholar
- Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonGoogle Scholar
- Davis L (ed) (1991) Handbook of genetic algorithms. Part I. A genetic algorithms tutorial. Van Nostrand Reinhold, New YorkGoogle Scholar
- Dixon W, Massey FJ (1983) Introduction to statistical analysis. McGraw-Hill, New YorkGoogle Scholar
- Dunn OJ, Clark VA (1974) Applied statistics-analysis of variance and regression. Wiley, New YorkGoogle Scholar
- Eisenhart C (1947) The assumptions underlying the analysis of variance. Biometrics 3:1CrossRefGoogle Scholar
- Fischbacher C, Jagemann K-U, Danzer K, Müller UA, Mertes B, Papenkorth L, Schüler J (1994/96) Unpublished results Google Scholar
- Fischbacher C, Jagemann K-U, Danzer K, Müller UA, Mertes B (1995) Non-invasive blood glucose monitoring by chemometrical evaluation of NIR-spectra. 24th EAS (Eastern Analytical Symposium), Somerset, NJ, November 12–16Google Scholar
- Fisher RA (1925) Theory of statistical estimation. Proc Cambridge Phil Soc 22:700Google Scholar
- Fisher RA (1935) The design of experiments. Oliver & Boyd, Edinburgh (7th edn 1960; 9th edn 1971, Hafner Press, New York)Google Scholar
- Frank IE, Todeschini R (1994) The data analysis handbook. Elsevier, AmsterdamGoogle Scholar
- Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, New YorkGoogle Scholar
- Graf U, Henning H-U, Stange K, Wilrich P-Th (1987) Formeln und Tabellen der angewandten mathematischen Statistik. Springer, Berlin Heidelberg New York (3. Aufl)Google Scholar
- Hald A (1960) Statistical tables and formulas. Wiley, New YorkGoogle Scholar
- Holland JH (1975) Adaption in natural and artifial systems. University of Michigan Press, Ann Arbor, MI. Revised ed (1992) MIT Press, Cambridge, MAGoogle Scholar
- Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Nat Acad Sci USA 79:2554CrossRefGoogle Scholar
- Kalivas JH (1992) Optimization using variations of simulated annealing. Chemom Intell Lab Syst 15:1CrossRefGoogle Scholar
- Kateman G (1990) Evolutions in chemometrics. Analyst 115:487CrossRefGoogle Scholar
- Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671CrossRefGoogle Scholar
- Lee BW, Sheu BJ (1990) Combinatorial optimization using competitive Hopfield neural network. Proc Internat Joint Conf Neural Networks II: 627, Washington, DCGoogle Scholar
- Lucasius, CB (1994) Evolutionary computation: a distinctive form of natural computation with chemometric potential. Chapter 9 in: Buydens LM, Melssen WJ: Chemometrics. Exploring and exploiting chemical information. Katholieke Universiteit NijmegenGoogle Scholar
- Lucasius CB, Kateman G (1993) Understanding and using genetic algorithms. Part 1. Concepts, properties and context. Chemom Intell Lab Syst 19:1CrossRefGoogle Scholar
- Lucasius CB, Blommers MJJ, Buydens LMC, Kateman G (1991) A genetic algotithm for conformational analysis of DNA. In: Davis L (ed) Handbook of genetic algorithms. Van Nostrand Reinhold, New YorkGoogle Scholar
- Mandel J (1961) Non-additivity in two-way analysis of variance. J Am Statist Assoc 56:878CrossRefGoogle Scholar
- Neave HR (1981) Elementary statistical tables. Allen Unwin, LondonGoogle Scholar
- Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33:305CrossRefGoogle Scholar
- Rechenberg I (1973) Evolutionsstrategie. Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, StuttgartGoogle Scholar
- Sachs L (1992) Angewandte Statistik, 7th edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
- Scheffé H (1961) The analysis of variance. Wiley, New YorkGoogle Scholar
- Sharaf MA, Illman DL, Kowalski BR (1986) Chemometrics. Wiley, New YorkGoogle Scholar
- van Laarhoven PJM, Aarts EHL (1987) Simulated annealing: theory and applications. Reidel, DordrechtGoogle Scholar
- Wegscheider W(1996) Validation of analytical methods. In: H. Günzler (ed) Accreditation and quality assurance in analytical chemistry. Springer, Berlin Heidelberg New YorkGoogle Scholar
- Wienke D, Lucasius C, Kateman G (1992) Multicriteria target vector optimization of analytical procedures using a genetic algorithm. Part I. Theory, numerical simulations and application to atomic emission spectroscopy. Anal Chim Acta 265:211CrossRefGoogle Scholar
- Wienke D, Lucasius C, Ehrlich M, Kateman G (1993) Multicriteria target vector optimization of analytical procedures using a genetic algorithm. Part II. Polyoptimization of the photometric calibration graph of dry glucose sensors for quantitative clinical analysis. Anal Chim Acta 271:253CrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2007