Skip to main content

Immune Circuits of the Skin

  • Chapter
Neuroimmunology of the Skin
  • 1182 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbas AK, Lichtman AH (2003) Cellular and Molecular Immunology, 5th ed. Saunders, Philadelphia

    Google Scholar 

  2. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunology, 2:675–680

    Article  PubMed  CAS  Google Scholar 

  3. Asahina A, Tamaki K (2006) Role of Langerhans cells in cutaneous protective immunity: is the reappraisal necessary? Journal of Dermatological Science, 44:1–9

    Article  PubMed  CAS  Google Scholar 

  4. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature, 392:245–252

    Article  PubMed  CAS  Google Scholar 

  5. Bardan A, Nizet V, Gallo RL (2004) Antimicrobial peptides and the skin. Expert Opinion on Biological Therapy, 4:543–549

    Article  PubMed  CAS  Google Scholar 

  6. Barnes PJ (1997) Nuclear factor-kappa B. The International Journal of Biochemistry and Cell Biology, 29:867–870

    Article  CAS  Google Scholar 

  7. Basham TY, Nickoloff BJ, Merigan TC, et al (1985) Recombinant gamma interferon differentially regulates class II antigen expression andbiosynthesis on cultured normal human keratinocytes. Journal of Interferon Research, 5:23–32

    PubMed  CAS  Google Scholar 

  8. Biron CA, Nguyen KB, Pien GC, et al (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annual Review of Immunology, 17:189–220

    Article  PubMed  CAS  Google Scholar 

  9. Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends in Immunology, 25:280–288

    Article  PubMed  CAS  Google Scholar 

  10. Born W, Cady C, Jones-Carson J, et al (1999) Immunoregulatory functions of gamma delta T cells. Advances in Immunology, 71:77–144

    Article  PubMed  CAS  Google Scholar 

  11. Bos JD (ed) (2005) Skin Immune System (SIS): Cutaneous Immunology and Clinical Immunodermatology, 3rd ed. CRC Press, Boca Raton

    Google Scholar 

  12. Bos JD, Kapsenberg ML (1986) The skin immune system (SIS): its cellular constituents and their interactions. Immunology Today, 7:235–240

    Article  Google Scholar 

  13. Bos JD, Zonneveld I, Das PK, et al (1987) The skin immune system (SIS): distribution and immunophenotype of lymphocyte subpopulations in normal human skin. Journal of Investigative Dermatology, 88:569–573

    Article  PubMed  CAS  Google Scholar 

  14. Braff MH, Bardan A, Nizet V, et al (2005) Cutaneous defense mechanisms by antimicrobial peptides. Journal of Investigative Dermatology, 125:9–13

    Article  PubMed  CAS  Google Scholar 

  15. Clark R, Kupper T (2005) Old meets new: the interaction between innate and adaptive immunity. Journal of Investigative Dermatology, 125:629–637

    Article  PubMed  CAS  Google Scholar 

  16. Dawicki W, Marshall JS (2007) New and emerging roles for mast cells in host defence. Current Opinion in Immunology, 19:31–38

    Article  PubMed  CAS  Google Scholar 

  17. Delves PJ, Roitt IM (2000) The immune system. First of two parts. The New England Journal of Medicine, 343:37–49

    Article  PubMed  CAS  Google Scholar 

  18. Delves PJ, Roitt IM (2000) The immune system. Second of two parts. The New England Journal of Medicine, 343:108–117

    Article  PubMed  CAS  Google Scholar 

  19. Di Nardo A, Vitiello A, Gallo RL (2003) Cutting edge: mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. The Journal of Immunology, 170:2274–2278

    PubMed  Google Scholar 

  20. Dunnick CA, Gibran NS, Heimbach DM (1996) Substance P has a role in neurogenic mediation of human burn wound healing. The Journal of Burn Care and Rehabilitation, 17:390–396

    Article  CAS  Google Scholar 

  21. Dustin ML, Singer KH, Tuck DT, et al (1988) Adhesion of T lymphoblasts to epidermal keratinocytes is regulated by interferon gamma and is mediated by intercellular adhesion molecule 1 (ICAM-1). The Journal of Experimental Medicine, 167:1323–1340

    Article  PubMed  CAS  Google Scholar 

  22. Elbe A, Foster CA, Stingl G (1996) T-cell receptor alpha beta and gamma delta T cells in rat and human skin — are they equivalent? Seminars in Immunology, 8:341–349

    Article  PubMed  CAS  Google Scholar 

  23. Enk CD, Sredni D, Blauvelt A, et al (1995) Induction of IL-10 gene expression in human keratinocytes by UVB exposure in vivo and in vitro. The Journal of Immunology, 154:4851–4856

    PubMed  CAS  Google Scholar 

  24. Ferrante A, Nandoskar M, Walz A, et al (1988) Effects of tumour necrosis factor alpha and interleukin-1 alpha and beta on human neutrophil migration, respiratory burst and degranulation. International Archives of Allergy and Applied Immunology, 86:82–91

    Article  PubMed  CAS  Google Scholar 

  25. Foster CA, Yokozeki H, Rappersberger K, et al (1990) Human epidermal T cells predominantly belong to the lineage expressing alpha/beta T cell receptor. The Journal of Experimental Medicine, 171:997–1013

    Article  PubMed  CAS  Google Scholar 

  26. Fujita H, Asahina A, Sugaya M, et al (2005) Differential production of Thl- and Th2-type chemokines by mouse Langerhans cells and splenic dendritic cells. Journal of Investigative Dermatology, 124:343–350

    Article  PubMed  CAS  Google Scholar 

  27. Galli SJ, Maurer M, Lantz CS (1999) Mast cells as sentinels of innate immunity. Current Opinion in Immunology, 11:53–59

    Article  PubMed  CAS  Google Scholar 

  28. Galli SJ, Nakae S, Tsai M (2005) Mast cells in the development of adaptive immune responses. Nature Immunology, 6:135–142

    Article  PubMed  CAS  Google Scholar 

  29. Gay NJ, Keith FJ (1991) Drosophila Toll and IL-1 receptor. Nature, 351:355–356

    Article  PubMed  CAS  Google Scholar 

  30. Geissmann F, Prost C, Monnet JP, et al (1998) Transforming growth factor betal, in the presence of granulocyte/macro-phage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells. The Journal of Experimental Medicine, 187:961–966

    Article  PubMed  CAS  Google Scholar 

  31. Groves RW, Allen MH, Ross EL, et al (1995) Tumour necrosis factor alpha is pro-inflammatory in normal human skin and modulates cutaneous adhesion molecule expression. The British Journal of Dermatology, 132:345–352

    Article  PubMed  CAS  Google Scholar 

  32. Groves RW, Rauschmayr T, Nakamura K, et al (1996) Inflammatory and hyperproliferative skin disease in mice that express elevated levels of the IL-1 receptor (type I) on epidermal keratinocytes. Evidence that IL-1-inducible secondary cytokines produced by keratinocytes in vivo can cause skin disease. The Journal of Clinical Investigation, 98:336–344

    Article  PubMed  CAS  Google Scholar 

  33. Hemmi H, Takeuchi O, Kawai T, et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature, 408:740–745

    Article  PubMed  CAS  Google Scholar 

  34. Hirsch E, Irikura VM, Paul SM, et al (1996) Functions of interleukin 1 receptor antagonist in gene knockout and overproducing mice. Proceedings of the National Academy of Sciences of the United States of America, 93:11008–11013

    Article  PubMed  CAS  Google Scholar 

  35. Hoshino K, Takeuchi O, Kawai T, et al (1999) Cutting edge: toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. The Journal of Immunology, 162:3749–3752

    PubMed  CAS  Google Scholar 

  36. Kaplan DH, Jenison MC, Saeland S, et al (2005) Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity, 23:611–620

    Article  PubMed  CAS  Google Scholar 

  37. Kinet JP (1999) The high-affinity IgE receptor (Fc epsilon RI): from physiology to pathology. Annual Review of Immunology, 17:931–972

    Article  PubMed  CAS  Google Scholar 

  38. Klareskog L, Tjernlund U, Forsum U, et al (1977) Epidermal Langerhans cells express Ia antigens. Nature, 268:248–250

    Article  PubMed  CAS  Google Scholar 

  39. Kock A, Schwarz T, Kirnbauer R, et al (1990) Human keratinocytes are a source for tumor necrosis factor alpha: evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light. The Journal of Experimental Medicine, 172:1609–1614

    Article  PubMed  CAS  Google Scholar 

  40. Kripke ML, Munn CG, Jeevan A, et al (1990) Evidence that cutaneous antigen-presenting cells migrate to regional lymph nodes during contact sensitization. The Journal of Immunology, 145:2833–2838

    PubMed  CAS  Google Scholar 

  41. Kupper TS, Fuhlbrigge RC (2004) Immune surveillance in the skin: mechanisms and clinical consequences. Nature Reviews, 4:211–222

    Article  PubMed  CAS  Google Scholar 

  42. Lanier LL (1998) NK cell receptors. Annual Review of Immunology, 16:359–393

    Article  PubMed  CAS  Google Scholar 

  43. Lee RT, Briggs WH, Cheng GC, et al (1997) Mechanical deformation promotes secretion of IL-1 alpha and IL-1 receptor antagonist. The Journal of Immunology, 159: 5084–5088

    PubMed  CAS  Google Scholar 

  44. Levings MK, Gregori S, Tresoldi E, et al (2005) Differentiation of Tr 1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+ Tr cells. Blood, 105:1162–1169

    Article  PubMed  CAS  Google Scholar 

  45. Malaviya R, Abraham SN (2001) Mast cell modulation of immune responses to bacteria. Immunological Reviews, 179:16–24

    Article  PubMed  CAS  Google Scholar 

  46. Marshall JS (2004) Mast-cell responses to pathogens. Nature Reviews, 4:787–799

    Article  PubMed  CAS  Google Scholar 

  47. Medzhitov R (2001) Toll-like receptors and innate immunity. Nature Reviews, 1:135–145

    Article  PubMed  CAS  Google Scholar 

  48. Medzhitov R, Janeway C Jr. (2000) Innate immunity. The New England Journal of Medicine, 343:338–344

    Article  PubMed  CAS  Google Scholar 

  49. Medzhitov R, Preston-Hurlburt P, Janeway CA, Jr. (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 388:394–397

    Article  PubMed  CAS  Google Scholar 

  50. Miller LS, Modlin RL (2007) Human keratinocyte Toll-like receptors promote distinct immune responses. Journal of Investigative Dermatology, 127:262–263

    Article  PubMed  CAS  Google Scholar 

  51. Mitsui H, Watanabe T, Saeki H, et al (2004) Differential expression and function of Toll-like receptors in Langerhans cells: comparison with splenic dendritic cells. Journal of Investigative Dermatology, 122:95–102

    Article  PubMed  CAS  Google Scholar 

  52. Murphy JE, Robert C, Kupper TS (2000) Interleukin-1 and cutaneous inflammation: a crucial link between innate and acquired immunity. Journal of Investigative Dermatology, 114:602–608

    Article  PubMed  CAS  Google Scholar 

  53. Muzio M, Natoli G, Saccani S, et al (1998) The human toll signaling pathway: divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). The Journal of Experimental Medicine, 187:2097–2101

    Article  PubMed  CAS  Google Scholar 

  54. Nilsson G, Johnell M, Hammer CH, et al (1996) C3a and C5a are chemotaxins for human mast cells and act through distinct receptors via a pertussis toxin-sensitive signal transduction pathway. The Journal of Immunology, 157:1693–1698

    PubMed  CAS  Google Scholar 

  55. Niyonsaba F, Ushio H, Nakano N, et al (2007) Antimicrobialpeptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. Journal of Investigative Dermatology, 127:594–604

    Article  PubMed  CAS  Google Scholar 

  56. Pang G, Couch L, Batey R, et al (1994) GM-CSF, IL-1 alpha, IL-1 beta, IL-6, IL-8, IL-10, ICAM-1 and VCAM-1 gene expression and cytokine production in human duodenal fibroblasts stimulated with lipopolysaccharide, IL-1 alpha and TNF-alpha. Clinical and Experimental Immunology, 96:437–443

    Article  PubMed  CAS  Google Scholar 

  57. Picker LJ, Kishimoto TK, Smith CW, et al (1991) ELAM-1 is an adhesion molecule for skin-homing T cells. Nature, 349:796–799

    Article  PubMed  CAS  Google Scholar 

  58. Pierre P, Turley SJ, Gatti E, et al (1997) Developmental regulation of MHC class II transport in mouse dendritic cells. Nature, 388:787–792

    Article  PubMed  CAS  Google Scholar 

  59. Reis e Sousa C (2001) Dendritic cells as sensors of infection. Immunity, 14:495–498

    Article  PubMed  CAS  Google Scholar 

  60. Robert C, Kupper TS (1999) Inflammatory skin diseases, T cells, and immune surveillance. The New England Journal of Medicine, 341:1817–1828

    Article  PubMed  CAS  Google Scholar 

  61. Romani N, Holzmann S, Tripp CH, et al (2003) Langerhans cells — dendritic cells of the epidermis. Apmis, 111:725–740

    Article  PubMed  CAS  Google Scholar 

  62. Rowden G, Lewis MG, Sullivan AK (1977) Ia antigen expression on human epidermal Langerhans cells. Nature, 268:247–248

    Article  PubMed  CAS  Google Scholar 

  63. Rutella S, Danese S, Leone G (2006) Tolerogenic dendritic cells: cytokine modulation comes of age. Blood, 108:1435–1440

    Article  PubMed  CAS  Google Scholar 

  64. Santamaria-Babi LF (2004) CLA(+) T cells in cutaneous diseases. European Journal of Dermatology, 14:13–18

    PubMed  Google Scholar 

  65. Schauber J, Gallo RL (2007) Expanding the roles of antimicrobial peptides in skin: alarming and arming keratinocytes. Journal of Investigative Dermatology, 127:510–512

    Article  PubMed  CAS  Google Scholar 

  66. Schroder JM, Harder J (2006) Antimicrobial skin peptides and proteins. Cellular and Molecular Life Sciences, 63:469–486

    Article  PubMed  CAS  Google Scholar 

  67. Schuler G, Romani N, Steinman RM (1985) A comparison of murine epidermal Langerhans cells with spleen dendritic cells. Journal of Investigative Dermatology, 85:99s–106s

    Article  PubMed  CAS  Google Scholar 

  68. Schwarzenberger K, Udey MC (1996) Contact allergens and epidermal proinflammatory cytokines modulate Langerhans cell E-cadherin expression in situ. Journal of Investigative Dermatology, 106:553–558

    Article  PubMed  CAS  Google Scholar 

  69. Seiffert K, Granstein RD (2006) Neuroendocrine regulation of skin dendritic cells. Annals of the New York Academy of Sciences, 1088:195–206

    Article  PubMed  CAS  Google Scholar 

  70. Silberberg I (1973) Apposition of mononuclear cells to langerhans cells in contact allergic reactions. An ultrastructural study. Acta Dermato-Venereologica, 53:1–12

    PubMed  CAS  Google Scholar 

  71. Silberberg-Sinakin I, Thorbecke GJ (1980) Contact hyper-sensitivity and Langerhans cells. Journal of Investigative Dermatology, 75:61–67

    Article  PubMed  CAS  Google Scholar 

  72. Steinhoff M, Brzoska T, Luger TA (2001) Keratinocytes in epidermal immune responses. Current Opinion in Allergy and Clinical Immunology, 1:469–476

    PubMed  CAS  Google Scholar 

  73. Stingl G, Wolff-Schreiner EC, Pichler WJ, et al (1977) Epidermal Langerhans cells bear Fc and C3 receptors. Nature, 268:245–246

    Article  PubMed  CAS  Google Scholar 

  74. Streilein JW (1978) Lymphocyte traffic, T-cell malignancies and the skin. Journal of Investigative Dermatology, 71:167–171

    Article  PubMed  CAS  Google Scholar 

  75. Supajatura V, Ushio H, Nakao A, et al (2002) Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. The Journal of Clinical Investigation, 109:1351–1359

    PubMed  CAS  Google Scholar 

  76. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annual Review of Immunology, 21:335–376

    Article  PubMed  CAS  Google Scholar 

  77. Valladeau J, Saeland S (2005) Cutaneous dendritic cells. Seminars in Immunology, 17:273–283

    Article  PubMed  CAS  Google Scholar 

  78. Valladeau J, Ravel O, Dezutter-Dambuyant C, et al (2000) Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity, 12:71–81

    Article  PubMed  CAS  Google Scholar 

  79. van der Aar AM, Sylva-Steenland RM, Bos JD, et al (2007) Loss of TLR2, TLR4, and TLR5 on Langerhans cells abolishes bacterial recognition. The Journal of Immunology, 178:1986–1990

    PubMed  Google Scholar 

  80. Visintin A, Mazzoni A, Spitzer JH, et al (2001) Regulation of Toll-like receptors in human monocytes and dendritic cells. The Journal of Immunology, 166:249–255

    PubMed  CAS  Google Scholar 

  81. Walker WE, Nasr IW, Camirand G, et al (2006) Absence of innate My D88 signaling promotes inducible allograft acceptance. The Journal of Immunology, 177: 5307–5316

    PubMed  CAS  Google Scholar 

  82. Williams RM, Berthoud HR, Stead RH (1997) Vagal afferent nerve fibres contact mast cells in rat small intestinal mucosa. Neuroimmunomodulation, 4:266–270

    PubMed  CAS  Google Scholar 

  83. Woolhiser MR, Brockow K, Metcalfe DD (2004) Activation of human mast cells by aggregated IgG through FcgammaRI:additive effects of C3a.Clinical Immunology, 110:172–180

    Article  PubMed  CAS  Google Scholar 

  84. Yamamoto M, Sato S, Hemmi H, et al (2003) Role of adaptor TRIF in the My D88-independent toll-like receptor signaling pathway. Science, 301:640–643

    Article  PubMed  CAS  Google Scholar 

  85. Zaiou M, Nizet V, Gallo RL (2003) Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/LL-37) prosequence. Journal of Investigative Dermatology, 120:810–816

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Weinstein or R. D. Granstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weinstein, E., Granstein, R.D. (2009). Immune Circuits of the Skin. In: Granstein, R.D., Luger, T.A. (eds) Neuroimmunology of the Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-35989-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-35989-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35986-9

  • Online ISBN: 978-3-540-35989-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics