Skip to main content

Long-term Deformations in Soils due to Cyclic Loading

  • Conference paper
Modern Trends in Geomechanics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 106))

  • 1458 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.D. Barksdale. Laboratory evaluation of rutting in base course materials. In Third International Conference on Structural Design of Asphalt Pavements, vol. 3, pp. 161-174, 1972

    Google Scholar 

  2. G. Bouckovalas, R.V. Whitman, and W.A. Marr. Permanent displacement of sand with cyclic loading. Journal of Geotechnical Engineering, 110(11):1606-1623,1984

    Article  Google Scholar 

  3. J.L. Chaboche. Constitutive equations for cyclic plasticity and cyclic viscoplasticity. International Journal of Plasticity, 5:247-302, 1989

    Article  MATH  Google Scholar 

  4. J.L. Chaboche. Modelling of ratchetting: evaluation of various approaches. European Journal of Mechanics, 13(4):501-518, 1994

    Google Scholar 

  5. C. Chopi and P. Arduino. Behavioral characteristics of gravelly soils under general cyclic loading conditions. In T. Triantafyllidis, editor, Cyclic Behaviour of Soils and Liquefaction Phenomena, pp. 115-122. Balkema, March/April 2004. International Conference in Bochum, 31 March - 02 April 2004

    Google Scholar 

  6. M.R. Coop. On the mechanics of reconstituted and natural sands. In H. Di Benedetto, T. Doanh, H. Geoffroy, and Sauzéat C., editors, Deformation characteristics of geomaterials. Recent investigations and prospects., pp. 29-58, Balkema, 2005

    Google Scholar 

  7. A. Ekberg. Rolling contact fatigue of railway wheels. PhD thesis, Chalmers University of Technology, 2000. Solid Mechanics

    Google Scholar 

  8. A. Gotschol. Veränderlich elastisches und plastisches Verhalten nichtbindiger Böden und Schotter unter zyklisch-dynamischer Beanspruchung. PhD thesis, Universität Gh Kassel, April 2002

    Google Scholar 

  9. J. Helm, J. Laue, and Th. Triantafydillis. Untersuchungen an der RUB zur Verformungsentwicklung von Böden unter zyklischen Beanspruchungen. In Th. Triantafyllidis, editor, Böden unter fast zyklischer Belastung: Erfahrungen und Forschungsergebnisse, pp. 109-133. Lehrstuhl für Grundbau und Bodenmechanik, Ruhr-Universität Bochum, 2000

    Google Scholar 

  10. I. Herle. Hypoplastizität und Granulometrie einfacher Korngerüste. PhD thesis, Institut für Boden- und Felsmechanik der Universität Karlsruhe, 1997. No. 142

    Google Scholar 

  11. A. Hettler. Verschiebungen starrer und elastischer Gründungskörper in Sand bei monotoner und zyklischer Belastung. PhD thesis, Institut für Boden- und Felsmechanik der Universität Karlsruhe, 1981. Heft No. 90

    Google Scholar 

  12. P. Hornych, J.F. Corte, and J.L. Paute. Étude des déformations permanentes sous chargements répétés de trois graves non traitées. Bulletin de Liaison des Laboratoires des Ponts et Chaussées, 184:77-84, 1993

    Google Scholar 

  13. K. Ishihara. Liquefaction and flow failure during earthquakes. Géotechnique, 43(3):351-415, 1993

    Article  Google Scholar 

  14. S. Khedr. Deformation characteristics of granular base course in flexible pavements. In Transportation Research Record, vol. 1043, pp. 131-138, 1985

    Google Scholar 

  15. H.Y. Ko and R.F. Scott. Deformation of sand in hydrostatic compression. Journal of Soil Mechanics and Foundations Division ASCE, 93(SM3):137-156, 1967

    Google Scholar 

  16. R.W. Lentz and G.Y. Baladi. Constitutive equation for permanent strain of sand subjected to cyclic loading. In Transportation Research Record, vol. 810, pp. 50-54, 1981

    Google Scholar 

  17. W.A. Marr and J.T. Christian. Permanent displacements due to cyclic wave loading. Journal of the Geotechnical Engineering Division ASCE, 107(GT8):1129-1149, 1981

    Google Scholar 

  18. G.R. Martin, W.D.L. Finn, and H.B. Seed. Fundamentals of liquefaction un- der cyclic loading. Journal of the Geotechnical Engineering Division ASCE, 101(GT5):423-439, 1975

    Google Scholar 

  19. H. Matsuoka and T. Nakai. A new failure for soils in three-dimensional stresses. In Deformation and Failure of Granular Materials, pp. 253-263, 1982. Proceedings of IUTAM Symposium. in Delft

    Google Scholar 

  20. M.A. Miner. Cumulative damage in fatigue. Transactions of the American Society of Mechanical Engineering, 67:A159-A164, 1945

    Google Scholar 

  21. Z. Mróz, V.A. Norris, and O.C. Zienkiewicz. An anisotropic hardening model for soils and its application to cyclic loading. International Journal for Numerical and Analytical Methods in Geomechanics, 2:203-221, 1978

    Article  MATH  Google Scholar 

  22. P.G. Nicholson, R.B. Seed, and H.A. Anwar. Elimination of membrane compli- ance in undrained triaxial testing. 1. measurement and evaluation. Canadian Geotechnical Journal, 30:727-738, 1993

    Article  Google Scholar 

  23. A. Niemunis. Extended hypoplastic models for soils. Ruhr-University Bochum, Institute of Soil Mechanics and Foundation Engineering, 2003. 34, available from www.pg.gda.pl/∼aniem/an-liter.html

  24. A. Niemunis and M. Cudny. On hyperplasticity for clays. Computers and Geotechnics, 23:221-236, 1998

    Article  Google Scholar 

  25. A. Niemunis and I. Herle. Hypoplastic model for cohesionless soils with elastic strain range. Mechanics of Cohesive-Frictional Materials, 2:279-299, 1997

    Article  Google Scholar 

  26. A. Niemunis, T. Wichtmann, and T. Triantafyllidis. A high-cycle accumulation model for sand. Computers and Geotechnics, 32(4):223-315, 2005

    Article  Google Scholar 

  27. A. Niemunis, T. Wichtmann, and Th. Triantafyllidis. Compaction of freshly pluviated granulates under uniaxial and multiaxial cyclic loading. In J. Vanicek et al., editor, Geotechnical problems with man-made and man-influenced grounds, vol. 1, pp. 855-860, August 2003. XIIIth European Conference On Soil Mechanics and Geotechnical Engineering, Prague

    Google Scholar 

  28. N.J. O’Riordan. Effects of cyclic loading on the long term settlements of structures. In M.P. O’Reilly and S.F. Brown, editors, Cyclic Loading of Soils, pp. 411- 433. Blackie Glasgow, 1992

    Google Scholar 

  29. I.V. Papadopoulos. A new criterion of fatigue strength for out-of-phase bending and torsion of hard metals. International Journal of Fatigue, 16:377-384, 1994

    Article  Google Scholar 

  30. J.L. Paute, P. Jouve, and E. Ragneau. Modéle de calcul pour le dimensionnement des chaussées souples. Bulletin de Liaison des Laboratoires des Ponts et Chaussées, 156:21-36, 1988

    Google Scholar 

  31. K.H. Roscoe and J.B. Burland. On the generalized stress-strain behaviour of wet clays. In J. Heyman and F.A. Leckie, editors, Engineering plasticity, pp. 535- 609. Cambridge University Press, 1968

    Google Scholar 

  32. A. Sawicki. An engineering model for compaction of sand under cyclic loading. Engineering Transactions, 35:677-693, 1987

    Google Scholar 

  33. Y. Shamoto, M. Sato, and J-M. Zhang. Simplified estimation of earthquakeinduced settlements in saturated sand deposits. Soils and Foundations, 36(1):39-50,1996

    Google Scholar 

  34. A.S.J. Suiker. Fatigue behaviour of granular materials. Technical Report 7-98- 119-3, Delft University of Technology, Faculty of Civil Engineering, 1998

    Google Scholar 

  35. A.S.J. Suiker. Static and cyclic loading experiments on non-cohesive granular materials. Technical Report 1-99-DUT-1, Delft University of Technology, Faculty of Civil Engineering, 1999

    Google Scholar 

  36. A.S.J. Suiker and R. de Borst. A numerical model for cyclic deterioration of railway tracks. International Journal for Numerical Methods in Engineering, 57:441-470, 2003

    Article  MATH  Google Scholar 

  37. G.T.H. Sweere. Unbound granular bases for roads. PhD thesis, Delft University of Technology, Netherlands, 1990

    Google Scholar 

  38. T. Triantafyllidis, T. Wichtmann, and A. Niemunis. On the determination of cyclic strain history. In T. Triantafyllidis, editor, Cyclic Behaviour of Soils and Liquefaction Phenomena, pp. 321-334. Balkema, March/April 2004. International Conference in Bochum, 31 March-02 April 2004

    Google Scholar 

  39. K.C. Valanis and C.F. Lee. Endochronic theory of cyclic plasticity with applications. Journal of Applied Mechanics, 51:367-374, 1984

    Article  MATH  Google Scholar 

  40. B. Vuong. Evaluation of back-calculation and performance models using a full scale granular pavement tested with the accelerated loading facility (alf ). In Proceedings 4th International Conference on the Bearing Capacity of Roads and Airfields, Minneapolis, pp. 183-197, 1994

    Google Scholar 

  41. T. Wichtmann, A. Niemunis, and T. Triantafyllidis. The effect of volumetric and out-of-phase cyclic loading on strain accumulation. In T. Triantafyllidis, editor, Cyclic Behaviour of Soils and Liquefaction Phenomena, pp. 247-256. Balkema, March/April 2004. International Conference in Bochum, 31 March-02 April 2004

    Google Scholar 

  42. T. Wichtmann, A. Niemunis, and T. Triantafyllidis. Strain accumulation in sand due to drained uniaxial cyclic loading. In T. Triantafyllidis, editor, Cyclic Behaviour of Soils and Liquefaction Phenomena, pp. 233-246. Balkema, March/April 2004. International Conference in Bochum, 31 March-02 April 2004

    Google Scholar 

  43. T. Wichtmann, A. Niemunis, and T. Triantafyllidis. Strain accumulation in sand due to cyclic loading: drained triaxial tests. Soil Dynamics and Earthquake Engineering, 2005 vol. 25, No 12, pp. 967-979

    Article  Google Scholar 

  44. H. Wolff and A.T. Visser. Incorporating elasto-plasticity in granular layer pavement design. In Proceedings of Institution of Civil Engineers Transport, vol. 105, pp. 259-272, 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Niemunis, A., Wichtmann, T., Triantafyllidis, T. (2006). Long-term Deformations in Soils due to Cyclic Loading. In: Wu, W., Yu, HS. (eds) Modern Trends in Geomechanics. Springer Proceedings in Physics, vol 106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-35724-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-35724-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25135-4

  • Online ISBN: 978-3-540-35724-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics