Skip to main content

Physical Background of Hypoplasticity

  • Conference paper
Modern Trends in Geomechanics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 106))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso-MarroquÍn F. & Herrmann H.J. (2004) Ratcheting of granular materials. Physical Review Letters 92(5): 054301-1-4

    Google Scholar 

  2. Andreotti B. (2004) The song of dunes as a wave-particle mode locking. Physical Review Letters 93(23): 238001-1-4

    Google Scholar 

  3. Åström J.A., Herrmann H.J. & Timonen J. (2000) Granular packings and fault zones. Physical Review Letters 84(4): 638-641

    Article  Google Scholar 

  4. Bak P., Tang C. & Wiesenfeld K. (1987) Self-organized criticality: an explana- tion of 1/f noise. Physical Review Letters 59(4): 381-384

    Article  MathSciNet  Google Scholar 

  5. Barkan D.D. (1962) Dynamics of Bases and Foundations. McGraw-Hill Series in Soils Engineering and Foundations

    Google Scholar 

  6. Bauer E. (1996) Calibration of a comprehensive hypoplastic model for granular materials. Soils and Foundations 36(1): 13-26

    Google Scholar 

  7. Bauer E. (1997) The critical state concept in hypoplasticity. In: Nineth International Conference on Computer Methods and Advances in Geomechanics. Balkema: 691-696

    Google Scholar 

  8. Bjerrum L. (1973) Problems of soil mechanics and construction on soft clays and structurally unstable soils (collapsible, expansive and others).In: Proceedings of the Eigth International Conference on Soil Mechanics and Foundation Engineering 3: 111-159

    Google Scholar 

  9. Bowden F.P. & Tabor D. (1967) Friction and Lubrication. Methuen

    Google Scholar 

  10. Bruce A. & Wallace D. (1989) Critical point phenomena: universal physics at large length scales. In: Davies P. (ed.) The New Physics. Cambridge University Press Cambridge: 236-267

    Google Scholar 

  11. Casagrande A. (1936) Characteristics of cohesionless soils affecting the stability of earth fills. Journal of the Boston Society of Civil Engineers, Contribution to Soil Mechanics

    Google Scholar 

  12. Cudmani R.O. (2005) The Application of Numerical Methods to the Solution of Static and Dynamic Geomechanical Problems. In preparation

    Google Scholar 

  13. Derjaguin B.V. & Churayev N.V. (1971) Investigation of the Properties of Water II. Journal of Colloid and Interface Science 36(4): 415-426

    Article  Google Scholar 

  14. Di Benedetto H., Tatsuoka F. & Ishihara M. (2002) Time-dependent shear deformation characteristics of sand and their constitutive modelling. Soils and Foundations 42(2): 1-22

    Google Scholar 

  15. Dijkstra M., Hansen J.-P. & Madden P.A. (1997) Statistical model for the struc- ture and gelation of smectite clay suspensions. Physical Review E 55(3): 3044-3053

    Article  Google Scholar 

  16. Ehlers W., Ramm E., Diebels S. & D’Adetta G.A. (2003) From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses. International Journal of Solids and Structures 40: 6681-6702

    Article  MATH  MathSciNet  Google Scholar 

  17. Feynman R.P., Leighton R.B. & Sands M. (1963) The Feynman Lectures on Physics. Addison-Wesley Reading, MA

    Google Scholar 

  18. Goldscheider M. (1975) Dilatanzverhalten von Sand bei geknickten Verformungswegen. Mechanics Research Communications 2: 143-148

    Article  Google Scholar 

  19. Gudehus G. (1972) Lower and upper bounds for stability of earth-retaining structures. In: Proceedings of the Fifth European Conference on Soil Mechanics and Foundation Engineering: 21-28

    Google Scholar 

  20. Gudehus G. (1979) A comparison of some constitutive laws for soils under radially symmetric loading and unloading. In: Wittke W. (ed.) Proceedings of the Third International Conference on Numerical Methods in Geomechanics: 1309-1323

    Google Scholar 

  21. Gudehus G. (1993) Spontaneous liquefaction of saturated granular bodies. In: Kolymbas D. (ed.) Workshop on Modern Approaches to Plasticity: 691-714

    Google Scholar 

  22. Gudehus G. (2004) A visco-hypoplastic constitutive relation for soft soils. Soils and Foundations 44(4): 11-26

    Google Scholar 

  23. Gudehus G. (2005a) Seismo-hypoplasticity with a granular temperature. Gran- ular Matter online

    Google Scholar 

  24. Gudehus G. (2005b) Strain rate dependent state limits of saturated clay. In preparation

    Google Scholar 

  25. Gudehus G. & Nübel K. (2004) Evolution of shear bands in sand. Géotechnique 54(3): 187-201

    Google Scholar 

  26. Gudehus G., Goldscheider M. & Winter H. (1975) Mechanical properties of sand and clay and numerical integration methods: some sources of errors and bounds of accuracy. In: Proceedings of the International Symposium on Numerical Methods in Soil Mechanics and Rock Mechanics: 289-304

    Google Scholar 

  27. Gudehus G., Cudmani R.O., Libreros-Bertini A.B. & Bühler M.M. (2004) Inplane and anti-plane strong shaking of soil systems and structures. Soil Dynamics and Earthquake Engineering 24(4): 319-342

    Article  Google Scholar 

  28. Guyon E. & Troadec J.-P. (1994) Du sac de billes au tas de sable. Editions Odile Jacob

    Google Scholar 

  29. Haken H. (1977) Synergetics - An Introduction. Springer Berlin Heidelberg New York

    Google Scholar 

  30. Herrmann H.J. (1993) On the thermodynamics of granular media. Journal de Physique II 3: 427-433

    Google Scholar 

  31. Hicher P.Y., Wahyudi H. & Tessier D. (1994) Microstructural analysis of strain localisation in clay. Computers and Geotechnics 16: 205-222

    Article  Google Scholar 

  32. Higo Y. (2003) Instability and strain localization analysis of water-saturated clay by elasto-viscoplastic constitutive models. Dissertation, Kyoto University

    Google Scholar 

  33. Howell D.W., Behringer R.P. & Veje C.T. (1999) Fluctuations in granular media. Chaos 9(3): 559-572

    Article  MATH  Google Scholar 

  34. Huang W. & Bauer E. (2002) Numerical investigation of shear localization in a micro-polar hypoplastic material. International Journal on Numerical and Analytical Methods in Geomechanics 27: 325-352

    Google Scholar 

  35. Huber G. & Wienbroer H. (2005) Vibro-viscosity and granular temperature of cylindrical grain skeletons-experiments, In: Proceedings of the Fifth International Conference on Powders and Grains

    Google Scholar 

  36. Hungr O. & Morgenstern N.R. (1984) High velocity ring shear tests on sand. Géotechnique 34: 415-421

    Article  Google Scholar 

  37. Hvorslev M.J. (1937) Über die Festigkeitseigenschaften gestörter bindiger Böden. Ingeniorvidenskabelige Skrifter A Nr.45, Danmarks Naturvidenskabelige Samfund, Dissertation, Kopenhagen

    Google Scholar 

  38. Israelachvili J.N. (1985) Intermolecular and Surface Forces. Academic, New York

    Google Scholar 

  39. Kolymbas D. (1978) Ein nichtlineares viskoplastisches Stoffgesetz für Böden. Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik, Heft 77, Universität Karlsruhe

    Google Scholar 

  40. Kolymbas D. (1991) An outline of hypoplasticity. Archive of Applied Mechanics 61: 143-151

    MATH  Google Scholar 

  41. Krieg S. (2000) Viskoses Bodenverhalten von Mudden, Seeton und Klei. Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik, Heft 150, Universität Karlsruhe

    Google Scholar 

  42. Leinenkugel H.J. (1976) Deformations- und Festigkeitsverhalten bindi- ger Erdstoffe-Experimentelle Ergebnisse und ihre physikalische Bedeutung. Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik. Heft 66, Universität Karlsruhe

    Google Scholar 

  43. Mitchell J.K., Campanella R.G. & Singh A. (1968) Soil creep as a rate process. Journal of Soil Mechanics and Foundation Div., ASCE 94 SM1: 231-259

    Google Scholar 

  44. Niemunis A. (2003) Extended Hypoplastic Models for Soils. Schriftenreihe des Institutes für Grundbau und Bodenmechanik, Ruhr-Universität Bochum, Heft 34

    Google Scholar 

  45. Niemunis A. & Herle I. (1997) Hypoplastic model for cohesionless soils with elastic strain range. Mechanics of Cohesive-Frictional Materials 2: 279-299

    Article  Google Scholar 

  46. Oka F. (1982) Elasto-viscoplastic constitutive equation for overconsolidated clay. In: Dungar R., Pande G.N., Studer J.A. (eds.) Proceedings of the International Symposium on Numerical Models in Geomechanics. Balkema: 147-156

    Google Scholar 

  47. Osinev V.A. (1998) Theoretical investigation of large-amplitude waves in granular soils. Soil Dynamics and Earthquake Engineering 17: 13-28

    Article  Google Scholar 

  48. Osinev V.A. & Wu W. (2005) Instability and ill-posedness in the deformation of plastic solids: some correlations through simple examples. In: Wang Y., Hutter K. (eds.) Proceedings of the Internatioal Symposium on Trends in Applications of Mathematics to Mechanics

    Google Scholar 

  49. Peñna A.A., Lizcano A., Alonso-Marroquín & Herrmann H.J. (2004) Numerical simulations of biaxial test using non-spherical particles. Submitted to Mechanics of Cohesive-Frictional Materials

    Google Scholar 

  50. Persson B.N.J. (1998) Sliding Friction-Physical Principle and Applicatons. Springer Balin Hieldelberg New York

    Google Scholar 

  51. Persson B.N.J. (2000) Theory of time-dependent plastic deformation in disordered solids. Physical Review B 61.9: 5949-5966

    Article  Google Scholar 

  52. Prandtl L. (1928) Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Zeitschrift für Angewandte Mathematik und Mechanik 8.2: 85-106

    Article  MATH  Google Scholar 

  53. Radjaj F., Wolf D.E., Jean M., Roux S. & Moreau J.J. (1997) Force networks in dense granular media. Balkema, Rotterdam: 211-214

    Google Scholar 

  54. Rendulic L. (1937) Ein Grundgesetz der Tonmechanik und sein experimenteller Beweis. Der Bauingenieur 18(31|32): 459-467

    Google Scholar 

  55. Schofield A. (2002) Re-appraisal of Terzaghi’s soil mechanics. In: Proceedings of the 15th International Conference on Soil Mechanics and Geotechnical Engineering 4: 2473-2482

    Google Scholar 

  56. Schofield A. & Wroth P. (1968) Critical State Soil Mechanics. McGraw-Hill Series in Soils Engineering and Foundations

    Google Scholar 

  57. Stauffer D. & Aharony A. (1991) Introduction to Perlocation Theory. Taylor & Francis London

    Google Scholar 

  58. Tejchman J. & Gudehus G. (2001) Shearing of a narrow granular layer with polar quanities. International Journal on Numerical and Analytical Methods in Geomechanics 25(1): 1-28

    Article  MATH  Google Scholar 

  59. Terzaghi K. (1920) New facts about surface-friction. Physical Review 16(1): 54-61

    Article  Google Scholar 

  60. Terzaghi K. (1925) Erdbaumechanik auf bodenphysikalischer Grundlage. Deuticke

    Google Scholar 

  61. Tillemans H.-J. & Herrmann H.-J. (1995) Simulating deformations of granular solids under shear. Physika A 217: 261-288

    Google Scholar 

  62. Topolnicki M. (1987) Observed stress-strain behaviour of remoulded saturated clay and examination of two constitutive models. Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik. Heft 107, Universität Karlsruhe

    Google Scholar 

  63. Wichtmann T., Niemunis A. & Triantafyllidis Th. (2004) Strain accumulation in sand due to drained uniaxial cyclic loading. In: Triantafyllidis (ed.) International Conference on Cyclic Behaviour of Soils and Liquefaction Phenomena. Balkema, Rotterdam: 233-246

    Google Scholar 

  64. Wu W. & Kolymbas D. (2000) Hypoplasticity then and now. In: Kolymbas D. (ed.) Constitutive Modelling of Granular Materials. Springer Barlin Hieldelberg New York: 57-105

    Google Scholar 

  65. Zerwer A. & Santamarina J.C. (1994) Double layers in pyrometamorphosed bentonite: index properties and complex permittivity. Applied Clay Science 9: 283-291

    Article  Google Scholar 

  66. Zou Y. (1996) A non-linear permeability relation depending on the activation energy of pore liqiud. Géotechnique 46(4): 769-774

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gudehus, G. (2006). Physical Background of Hypoplasticity. In: Wu, W., Yu, HS. (eds) Modern Trends in Geomechanics. Springer Proceedings in Physics, vol 106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-35724-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-35724-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25135-4

  • Online ISBN: 978-3-540-35724-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics