Skip to main content
  • 5035 Accesses

Abstract

This chapter presents five applications that illustrate how the methods developed in the preceeding chapters can be applied under real practical conditions and how they can be combined to get a complete solution of fault-tolerant control problems. A three-tank system, a chemical process, a ship propulsion system, a steam generator and a steering-by-wire system for a warehouse truck are considered, each of which have been investigated in detail including experimental tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10.7 Bibliographical notes

  1. K. J. Aström, P. Albertos, M. Blanke, A. Isidori, R. Sanz and W. Schaufelberger. Control of Complex Systems. Springer Verlag London, 2001.

    MATH  Google Scholar 

  2. M. Bayart and M. Staroswiecki. Smart actuators for distributed intelligent systems. IFAC Symposium Distributed Intelligent Systems, Arlington 1991.

    Google Scholar 

  3. M. Blanke. Ship Propulsion Losses Related to Automatic Steering And Prime Mover Control. PhD thesis, Technical University of Denmark, 1981.

    Google Scholar 

  4. M. Blanke and J. S. Andersen. On dynamics of large two stroke diesel engines: New results from identification. Proceedings 9th IFAC World Conference, Budapest 1984.

    Google Scholar 

  5. Blanke, M., Izadi-Zamanabadi, R., and Lootsma, T.F. (1998). Fault monitoring and reconfigurable control for a ship propulsion plant, Journal of Adaptive Control and Signal Processing, vol. 12, pp.671–688.

    Article  Google Scholar 

  6. M. Blanke, T. Frederiksen, J. Kristensen und J. Sandberg Thomsen. Electrical steering system. United states patent, US 6,693,405 b2.

    Google Scholar 

  7. M. Blanke, C. W. Frei, F. Kraus, R. J. Patton and M. Staroswiecki. What is fault-tolerant control? IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, 1: 40–51, Budapest 2000.

    Google Scholar 

  8. M. Blanke, R. Izadi-Zamanabadi, S. A. Bøgh and C. P. Lunau. Fault-tolerant control systems — a holistic view. Control Engineering Practice, 5: 693–702, 1997.

    Article  Google Scholar 

  9. M. Blanke, M. Staroswiecki and N. E. Wu. Concepts and methods in fault-tolerant control. Proc. American Control Conference, Washington 2001.

    Google Scholar 

  10. S. A. Bøgh. Fault Tolerant Control Systems — A Development Method and Real-Life Case Study. PhD thesis, Dept. of Control Eng., Aalborg University, Denmark 1997.

    Google Scholar 

  11. S. A. Bøgh, R. Izadi-Zamanabadi and M. Blanke. Onboard supervisor for the ørsted satellite attitude control system. Artificial Intelligence and Knowledge Based Systems for Space, 5th Workshop, pp. 137–152, Noordwijk 1995.

    Google Scholar 

  12. Bonivento C., Paoli A. and Marconi L. (2003). Fault-Tolerant Control for the Ship Propulsion System, Control Engineering Practice, vol. 11, pp. 483–492.

    Article  Google Scholar 

  13. O. Boumaman, G. Dauphin-Tanguy. Bond graph model of a steam generator process and its environment. 10-th European Simulation Multiconference, pp. 238–242, Budapest 1996.

    Google Scholar 

  14. M. A. Cash, T. G. Habetler and G. B. Kliman. Insulation failure prediction in induction machines using line-neutral voltages. IEEE Transactions on Industry Applications, 54: 1234–1239, 1998.

    Article  Google Scholar 

  15. Edwards, C. and S. K. Spurgeon (2000). A sliding mode observer based FDI scheme for the ship benchmark. European Journal of Control, vol 6(4) pp 341–356.

    MathSciNet  Google Scholar 

  16. N. Ertugrul, W. Soong, G. Dostal and D. Saxon. Fault tolerant motor drive system with redundancy for critical applications. Proc. IEEE 33rd Annual Power Electronics Specialists Conference, pp. 1457–1462, 2002.

    Google Scholar 

  17. C. W. Frei, F. J. Kraus and M. Blanke. Recoverability viewed as a system property. Proc. European Control Conference, Karlsruhe 1999.

    Google Scholar 

  18. J. P. Gauthier, H. Hammouri and S. Othman. A simple observer for nonlinear systems applications to bioreactors. IEEE Trans., AC-37: 875–880, 1992.

    MathSciNet  Google Scholar 

  19. A. L. Gehin and M. Staroswiecki. A formal approach to reconfigurability analysis — Application to the three tank benchmark. Proc. European Control Conference, Karlsruhe 1999.

    Google Scholar 

  20. B. Heiming and J. Lunze. Definition of the three-tank benchmark problem for controller reconfiguration. European Control Conference, Karlsruhe 1999. http://www.ruhruni-bochum.de/atp.

    Google Scholar 

  21. D. Herrmann. Qualitative Fehlerdiagnose im Automatennetz am COSY Ship Propulsion Benchmark. Diplomarbeit, TU Hamburg-Harburg, 2000.

    Google Scholar 

  22. R. Izadi-Zamanabadi, M. Blanke and S. Katebi (2003). Cheap diagnosis using structural modelling and fuzzy-logic based detection. Control Engineering Practice vol. 11(4) pp 415–421.

    Article  Google Scholar 

  23. R. Izadi-Zamanabadi and M. Blanke. Ship propulsion system as a benchmark for faulttolerant control. Technical report, Control Engineering Dept., Aalborg University, Denmark 1998.

    Google Scholar 

  24. R. Izadi-Zamanabadi and M. Blanke. A ship propulsion system as a benchmark for faulttolerant control. Control Engineering Practice, 7: 227–239, 1999.

    Article  Google Scholar 

  25. R. Izadi-Zamanabadi. Fault-Tolerant Supervisory Control — System Analysis and Logic Design. PhD thesis, Dept. of Control Eng., Aalborg University, Denmark 1999.

    Google Scholar 

  26. K. S. Kallesøe. Fault Detection and Isolation in Centrifugal Pumps. PhD thesis, Department of Control Engineering and Grundfos A/S, 2005.

    Google Scholar 

  27. T. F. Lootsma. Observer-based fault detection and isolation for nonlinear systems. Ph.D. thesis, Department of Control Engineering, Aalborg University, Denmark 2001.

    Google Scholar 

  28. C. P. Lunau. A reflective architecture for process control applications. In M. Aksit and S. Matsuoka, editors, ECOP’97 Object Oriented Programming, pp. 170–189. Springer Verlag, 1997.

    Google Scholar 

  29. J. Lunze, J. Askari-Marnani and B. Heiming. Controller reconfiguration based on qualitative model: A solution of three-tanks benchmark problem. European Control Conference, Karlsruhe 1999.

    Google Scholar 

  30. J. Lunze and J. Schröder. Application of qualitative observation and prediction to a neutralisation process. Proceedings of 14th IFAC Congress, 1: 49–54, Beijing 1999.

    Google Scholar 

  31. J. Lunze and J. Schröder. Process diagnosis based on a discrete-event description. Automatisierungstechnik, 47: 358–365, 1999.

    Google Scholar 

  32. J. Lunze and T. Steffen. Rekonfiguration linearer Systeme bei Aktor-und Sensorfehlern. Automatisierungstechnik, 43, 2003.

    Google Scholar 

  33. A. W. Ordys. Modeling and Simulation of Power Generation Plants. Springer-Verlag 1994.

    Google Scholar 

  34. R. J. Patton. Fault-tolerant control: The 1997 situation. IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, pp. 1033–1055, Hull 1997.

    Google Scholar 

  35. R. L. A. Ribeiro, C. B. Jacobinna, E. R. C. da Silva and A. M. N. Lima. Fault-tolerant voltagefed pwm inverter ac motor drive systems. IEEE Transactions on Industrial Electronics, 51: 439–446, 2004.

    Article  Google Scholar 

  36. F. Schiller and J. Schröder. Combining qualitative model-based diagnosis and observation with fault-tolerant systems. AI Communications, 12: 79–98, 1999.

    Google Scholar 

  37. T. Schlage. Rekonfiguration einer Prozessregelung mittels virtuellem Aktor. Diplomarbeit, Ruhr-Universität Bochum, Lehrstuhl für Automatisierungstechnik und Prozessinformatik, 2006.

    Google Scholar 

  38. J. Schröder. Modelling, State Observation and Diagnosis of Quantised Systems. Springer-Verlag, Berlin, 2002.

    MATH  Google Scholar 

  39. M. Staroswiecki, S. Attouche and M. L. Assas. A graphic approach for reconfigurability analysis. 10th Int. Workshop on Principles of Diagnosis, Loch Awe 1999.

    Google Scholar 

  40. G. K. Singh, V. Pant. Analysis of a multiphase induction machine under fault condition in a phase-redundant a.c. drive system. Electric machines and Power Systems, 28: 577–590, 2000.

    Article  Google Scholar 

  41. T. Steffen. Control Reconf iguration of Dynamical System: Linear Approaches and Structural Tests. Springer-Verlag, Heidelberg 2005.

    Google Scholar 

  42. R. M. Tallam, T. G. Habetler and R. G. Harley. Transient model for induction machines with stator winding turn faults. IEEE Transactions on Industry Applications, 38: 632–637, 2003.

    Article  Google Scholar 

  43. R. M. Tallam, T. G. Habetler and R. G. Harley. Stator winding turn-fault detection for closed-loop induction motor drives. IEEE Transactions on Industry Applications, 39: 720–724, 2003.

    Article  Google Scholar 

  44. J. Thoma and B. Ould Bouamama. Modelling and simulation in thermal and chemical engineering: A Bond graph approach. Springer-Verlag Berlin, 2000.

    Google Scholar 

  45. J. S. Thomsen. A Fault Tolerant Electronic Steering System for a Fork Lift Truck. Internal report, Aalborg University and Danfoss A/S, 2000.

    Google Scholar 

  46. J. S. Thomsen and M. Blanke. Fault-tolerant Electrical Steering for Warehouse Trucks. IEEE IECON’06: 32nd Annual Conference of the IEEE Industrial Electronics Society, November 2006 (submitted).

    Google Scholar 

  47. C. Thybo. Fault-Tolerant Control of Inverter Controlled Induction Motors. PhD Thesis, Aalborg University 2000.

    Google Scholar 

  48. C. Thybo and M. Blanke. Industrial cost-benefit assessment for fault-tolerant control systems. Proc. IEE Conference Control, Swansea 1998, pp. 1151–1156.

    Google Scholar 

  49. N. E. Wu and T. J. Chen. Reliability prediction for self-repairing flight control systems. Proc. 35th IEEE Conference on Desicion and Control, Kobe 1996.

    Google Scholar 

  50. N. E. Wu and G. J. Klir. Optimal redundancy management in reconfigurable control systems based on normalised nonspecificity. Int. Journal of Systems Science, 31: 797–808, 2000.

    Article  MATH  Google Scholar 

  51. N. E. Wu, K. Zhou and G. Salomon. Reconfigurability in linear time-invariant systems. Automatica 36: 1767–1771, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  52. N. E. Wu, S. Thavamani, Y. M. Zhang and M. Blanke. Sensor fault masking of a ship propulsion system, Control Engineering Practice, 2006 (in print).

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Application examples. In: Diagnosis and Fault-Tolerant Control. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-35653-0_10

Download citation

Publish with us

Policies and ethics