Skip to main content

Drift and Selection in Evolving Interacting Systems

  • Chapter

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

There are various levels of interacting networks, within a protein or nucleic acid molecule, among proteins and nucleic acids, and genetic regulatory networks. At all these levels, interacting systems are dynamically evolving and repeated appearance of modular structures is noted. These modular structures repeatedly appear at different levels from proteins to genetic regulatory networks. Evolution of primary structure of proteins and nucleic acids depends on all these systems. For the evolution of such interacting systems, both drift and selection play important roles. Therefore, the near neutrality holds. The nearly neutral theory argues that slightly deleterious mutant substitutions disturb such systems mildly and occur by drift. Compensatory mutant substitutions are expected to follow. Drift and selection often become inseparable, such that formation and maintenance of networks depends on the interaction of drift and selection. By considering the effects of drift and selection on evolution of genetic regulatory elements that determine gene expression, the nearly neutral theory may be extended to morphological evolution, because organismal development is mainly controlled by regulation of gene expression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Bastolla, M. Porto, H.E. Roman, M. Vendruscolo, J. Mol. Evol. 57, S103 (2003)

    Article  Google Scholar 

  2. M. Kimura, The Neutral Theory of Molecular Evolution (Cambridge University Press, Cambridge, 1983)

    Book  Google Scholar 

  3. N. Takahata, Genetics 116, 169 (1987)

    Google Scholar 

  4. R.E. Dickerson, J. Mol. Evol. 1, 26 (1971)

    Article  Google Scholar 

  5. H.B. Fraser, A.E. Hirsh, L.M. Steinmetz, C. Scharfe, M.W. Feldman, Science 296,750(2002)

    Article  ADS  Google Scholar 

  6. S.B. Carroll, J.K. Grenier, S.D. Weatherbee, From DNA to Diversity, Molecular Genetics and the Evolution of Animal Design (Blackwell Science, Massachusetts, 2001)

    Google Scholar 

  7. M.Z. Ludwig, C. Bergman, N.H. Patel, M. Kreitman, Nature 403, 564 (2000)

    Article  ADS  Google Scholar 

  8. E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, A.-L. Barabasi, Science 297,1551(2002)

    Article  ADS  Google Scholar 

  9. S. Wuchty, Z.N. Oltvai, A.-L. Barabasi, Nat. Genet. 35, 176 (2003)

    Article  Google Scholar 

  10. G. Schlosser, G.P. Wagner, Modularity in Development and Evolution (University of Chicago Press, Chicago, 2004)

    Google Scholar 

  11. E.H. Davidson, Genomic Regulatory Systems (Academic Press, San Diego, CA, 2001)

    Google Scholar 

  12. Z.N. Oltvai, A.-L. Barabasi, Science 298, 763 (2002)

    Article  Google Scholar 

  13. E. Zuckerkandl, L. Pauling, in Evolving Genes and Proteins, ed. by V. Bryson, H.J. Vogel (Academic, New York, 1965) pp. 97-166

    Google Scholar 

  14. M. Kimura, Nature 217, 624 (1968)

    Article  ADS  Google Scholar 

  15. J.B.S. Haldane, J. Genet. 55, 511 (1957)

    Article  Google Scholar 

  16. J.L. King, T.H. Jukes, Science 164, 788 (1969)

    Article  ADS  Google Scholar 

  17. M. Kimura, Proc. Nat. Acad. Sci. USA 63, 1181 (1969)

    Article  ADS  Google Scholar 

  18. R.C. Lewontin, The Genetic Basis of Evolutionary Change (Columbia University Press, New York, 1974)

    Google Scholar 

  19. T. Ohta, M. Kimura, J. Mol. Evol. 1, 18 (1971)

    Article  Google Scholar 

  20. T. Ohta, Nature 246, 96 (1973)

    Article  ADS  Google Scholar 

  21. M. Akam, Cell 57, 347 (1989)

    Article  Google Scholar 

  22. T. Ohta, Genetics 134, 1271 (1993)

    Google Scholar 

  23. B. Tiplody, M. Goodman, J. Mol. Evol. 9, 343 (1977)

    Article  Google Scholar 

  24. M. Lynch, A. Force, Genetics 154, 459 (2000)

    Google Scholar 

  25. W.-H. Li, in Population Genetics and Molecular Evolution, ed. by T. Ohta, K. Aoki (Japan Scientific Society, Tokyo, 1985) pp. 333-352

    Google Scholar 

  26. T. Ohta, Genetics 138, 1331 (1994)

    Google Scholar 

  27. T. Ohta, J. Mol. Evol. 1, 305 (1972)

    Article  Google Scholar 

  28. T. Ohta, Annu. Rev. Ecol. Syst. 23, 263 (1992)

    Article  Google Scholar 

  29. T. Ohta, J. Mol. Evol. 41, 115 (1995)

    Google Scholar 

  30. Rat Genome Sequencing Project Consortium, Nature 428, 493 (2004)

    Google Scholar 

  31. G. Bernardi, Structural and Evolutionary Genomics, Natural Selection in Genome Evolution (Elsevier, Amsterdam, 2004)

    Google Scholar 

  32. F.G. Jorgensen, A. Hobolth, H. Hornshoj, C. Bendixen, M. Fredholm, M.H. Schierup, BMC Biol. 3, 2 (2005)

    Article  Google Scholar 

  33. J. Lu, C.-I. Wu, Proc. Natl. Acad. Sci. USA 102, 4063 (2005)

    Article  ADS  Google Scholar 

  34. Z. Gu, L. David, D. Petrov, T. Jones, R.W. Davis, L.M. Steinmetz, Proc. Natl. Acad. Sci. USA 102, 1092 (2005)

    Article  ADS  Google Scholar 

  35. P.D. Keightley, M.J. Lercher, A. Eyre-Walker, PLOS Biol. 3(2), e42 (2005)

    Article  Google Scholar 

  36. A.L. Hughes, Genetics 169, 533 (2005)

    Article  Google Scholar 

  37. J.H. Gillespie, The Causes of Molecular Evolution (Oxford University Press, Oxford, 1991)

    Google Scholar 

  38. M. Kimura, Genetics 47, 713 (1962)

    Google Scholar 

  39. C.D. Bustamante, R. Nielsen, S.A. Sawyer, K.M. Olsen, M.D. Purugganan, L.D. Hartl, Nature 416, 531 (2002)

    Article  ADS  Google Scholar 

  40. J.C. Fay, G.J. Wyckoff, C.-I. Wu, Nature 415, 1024 (2002)

    Article  ADS  Google Scholar 

  41. N.G.C. Smith, A. Eyre-Walker, Nature 415, 1022 (2002)

    Article  ADS  Google Scholar 

  42. R. Sanjuan, A. Moya, S.F. Elena, Proc. Natl. Acad. Sci. USA 101, 8396 (2004)

    Article  ADS  Google Scholar 

  43. R. Nielsen, Z. Yang, Mol. Biol. Evol. 20, 1231 (2003)

    Article  Google Scholar 

  44. G. Piganeau, A. Eyre-Walker, Proc. Nat. Acad. Sci. USA 100, 10335 (2003)

    Article  ADS  Google Scholar 

  45. J.H. McDonald, M. Kreitman, Nature 351, 652 (1991)

    Article  ADS  Google Scholar 

  46. T. Ohta, H. Tachida, Genetics 126, 219 (1990)

    Google Scholar 

  47. H. Tachida, Genetics 128, 183 (1991)

    Google Scholar 

  48. T. Ohta, Theor. Pop. Biol. 10, 254 (1976)

    Article  Google Scholar 

  49. J.W. Thatcher, J.M. Shaw, W.J. Dickinson, Proc. Nat. Acad. Sci. USA 95, 253 (1998)

    Article  ADS  Google Scholar 

  50. S.K. Remold, R.E. Lenski, Nat. Genet. 36, 423 (2004)

    Article  Google Scholar 

  51. H. Innan, Y. Kim, Proc. Nat. Acad. Sci. USA 101, 10667 (2004)

    Article  ADS  Google Scholar 

  52. T. Ohta, Proc. Nat. Acad. Sci. USA 99, 16134 (2002)

    Article  ADS  Google Scholar 

  53. M. Lynch, J.S. Cornery, Science 302, 1401 (2003)

    Article  ADS  Google Scholar 

  54. M.W. Hahn, J.E. Stajich, G.A. Wray, Mol. Biol. Evol. 20, 901 (2003)

    Article  Google Scholar 

  55. G.A. Wray, M.W. Hahn, E. Abounheif, J.P. Balhoff, M. Pizer, M.W. Rockman, L.A. Romono, Mol. Biol. Evol. 20, 1377 (2003)

    Article  Google Scholar 

  56. M.V. Rockman, G.A. Wray, Mol. Biol. Evol. 19, 1991 (2002)

    Google Scholar 

  57. A.S. Wilkins, The Evolution of Developmental Pathways (Sinauer Associates, Sunderland, MA, 2001)

    Google Scholar 

  58. S.L. Rutherford, S. Lindquist, Nature 396, 336 (1998)

    Article  ADS  Google Scholar 

  59. P. Schuster, in Evolutionary Dynamics, ed. by J.P. Crutchfield, P. Schuster (Oxford University Press, Oxford, 2003) pp. 163-215

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ohta, T. (2007). Drift and Selection in Evolving Interacting Systems. In: Bastolla, U., Porto, M., Roman, H.E., Vendruscolo, M. (eds) Structural Approaches to Sequence Evolution. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-35306-5_13

Download citation

Publish with us

Policies and ethics