Skip to main content

Multilevel Numerical Algorithms and Experiments for Contact Dynamics

  • Chapter
Multifield Problems in Solid and Fluid Mechanics

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 28))

  • 1423 Accesses

Summary

Nonlinear frictional contact problems are still a challenging task both from the mathematical and engineering point of view. These problems are of crucial importance in various applications. In this report we study dynamical contact problems on mathematical and experimental aspects. In the mathematical part we present a variationally consistent formulation based on mortar techniques with dual Lagrange multipliers for this type of problems. Furthermore, new optimal a priori and a posteriori error estimates were achieved, and numerical results for nearly incompressible materials are given. To solve the resulting nonlinear algebraic problem, we use a primal-dual active set strategy which can also be interpreted as semismooth Newton method. In combination with optimal multigrid methods, the inexact version of this approach can be regarded as a nonlinear multigrid method, and we end up with an efficient iterative solver. In the engineering part experiments to study the properties of the impact between a rotating disc and an elastic strip are presented. Experimental setup and methods are designed to release the disc with prescribed translational and rotational velocities. The impact event is captured by a high-speed digital camera system. Based on image processing, impact quantities, that is, coefficients of normal and tangential restitution, impulse ratio, rotational velocity change, incidence and rebound angles, are measured. A numerical model for interpreting the experimental data is developed, which can also give some insight into effects of strip flexibility. Results are also compared with those from finite element calculations.

Research Project B8 “Contact Dynamics with Multibody Systems and Multigrid Methods”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ainsworth and J. Oden. A posteriori error estimation in finite element analysis. John Wiley & Sons, New York, 2000.

    MATH  Google Scholar 

  2. M. Al-Mousawi. On experimental studies of longitudinal and flexural wave propagations: An annotated bibliography. Applied Mechanics Review, 39:835–864, 1986.

    Article  Google Scholar 

  3. P. Alart and A. Curnier. A mixed formulation for frictional contact problems prone to Newton like solution methods. Computer Methods in Applied Mechanics and Engineering, 92:353–375, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Arnold and R. Winther. Mixed finite element methods for elasticity. Numerische Mathematik, 92:401–419, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuß, H. Rentz-Reichert, and C. Wieners. UG — a flexible software toolbox for solving partial differential equations. Computing and Visualization in Science, 1:27–40, 1997.

    Article  MATH  Google Scholar 

  6. M. Beitelschmidt. Reibstöße in Mehrkörpersystemen. Fortschritt-Berichte VDI, Reihe 11, Nr. 275. VDI Verlag, Düsseldorf, 1999.

    Google Scholar 

  7. F. Ben Belgacem. Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element methods. SIAM Journal on Numerical Analysis, 37(4):1198–1216, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  8. F. Ben Belgacem, P. Hild, and P. Laborde. Extension of the mortar finite element method to a variational inequality modeling unilateral contact. Mathematical Models & Methods in Applied Sciences, 9:287–303, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  9. F. Ben Belgacem and Y. Renard. Hybrid finite element methods for the Signorini problem. Mathematics of Computation, 72(243):1117–1145, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Boieri, F. Gastaldi, and D. Kinderlehrer. Existence, Uniqueness, and Regularity Results for the Two-Body Contact Problem. Applied Mathematics and Optimization, 15:251–277, 1987.

    Article  MathSciNet  Google Scholar 

  11. K. Chavan, B. Lamichhane, and B. Wohlmuth. Locking-free finite element methods for linear and nonlinear elasticity in 2D and 3D. Technical Report 13, Universität Stuttgart, SFB 404, 2005.

    Google Scholar 

  12. V. Chawla and T. Laursen. Energy consistent algorithms for frictional contact problems. International Journal for Numerical Methods in Engineering, 42:799–827, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Christensen and J. Pang. Frictional contact algorithms based on semismooth Newton methods. In Reformulation: nonsmooth, piecewise smooth, semismooth and smoothing methods, volume 22 of Applied Optimization, pages 81–116. Kluwer, 1999.

    MATH  MathSciNet  Google Scholar 

  14. A. Christoforou and A. Yigit. Effect of flexibility on low velocity impact response. Journal of Sound and Vibration, 217(3):563–578, 1998.

    Article  Google Scholar 

  15. P. Coorevits, P. Hild, K. Lhalouani, and T. Sassi. Mixed finite element methods for unilateral problems: convergence analysis and numerical studies. Mathematics of Computation, 71(237):1–25, 2001.

    Article  MathSciNet  Google Scholar 

  16. P. Eberhard. Kontaktuntersuchungen durch hybride Mehrkörpersystem/Finite Elemente Simulationen. Shaker Verlag, Aachen, 2000.

    Google Scholar 

  17. P. Eberhard and B. Hu. Advanced Contact Dynamics. Southeast University Press, Nanjing, 2003. (in Chinese).

    Google Scholar 

  18. P. Eberhard and W. Schiehlen. Computational dynamics of multibody systems: History, formalisms, and applications. Journal of Computational and Nonlinear Dynamics, 1(1):3–12, 2006.

    Google Scholar 

  19. R. Falk. Error estimates for the approximation of a class of variational inequalities. Mathematics of Computation, 28:963–971, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  20. B. Flemisch, M. Puso, and B. Wohlmuth. A new dual mortar method for curved interfaces: 2D elasticity. International Journal for Numerical Methods in Engineering, 63(6):813–832, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  21. S. Foerster, M. Louge, H. Chang, and K. Allia. Measurements of the collision properties of small spheres. Physics of Fluids, 6(3):1108–1115, 1994.

    Article  Google Scholar 

  22. R. Glowinski. Numerical methods for nonlinear variational problems. Springer-Verlag, New York, 1984.

    MATH  Google Scholar 

  23. W. Goldsmith. Impact: The Theory and Physical Behaviour of Colliding Solids. Edward Arnold, London, 1960.

    MATH  Google Scholar 

  24. D. Gorham and A. Kharaz. The measurement of particle rebound characteristics. Powder Technology, 112(3):193–202, 2000.

    Article  Google Scholar 

  25. K. Graff. Wave Motion in Elastic Solids. Oxford University Press, Oxford, 1975.

    MATH  Google Scholar 

  26. J. Haslinger and I. Hlaváček. Contact between two elastic bodies — I. continuous problems. Aplikace Mathematiky, 25:324–347, 1980.

    MATH  Google Scholar 

  27. J. Haslinger, I. Hlaváček, and J. Nečas. Numerical methods for unilateral problems in solid mechanics. In P. Ciarlet and J.-L. Lions, editors, Handbook of Numerical Analysis, volume IV, pages 313–485. North-Holland, 1996.

    Google Scholar 

  28. H. Hertz. Über die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik, 92:156–171, 1882.

    Article  MATH  Google Scholar 

  29. P. Hild. Numerical implementation of two nonconforming finite element methods for unilateral contact. Computer Methods in Applied Mechanics and Engineering, 184(1):99–123, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  30. P. Hild and P. Laborde. Quadratic finite element methods for unilateral contact problems. Applied Numerical Mathematics, 41:410–421, 2002.

    Article  MathSciNet  Google Scholar 

  31. M. Hintermüller, K. Ito, and K. Kunisch. The primal-dual active set strategy as a semismooth Newton method. SIAM Journal on Optimization, 13(3):865–888, 2003.

    Article  MATH  Google Scholar 

  32. B. Hu and P. Eberhard. Experimental and theoretical investigation of a rigid body striking an elastic rod. Institute Report IB-32, Institute B of Mechanics, University of Stuttgart, Stuttgart, Germany, 1999.

    Google Scholar 

  33. H. Hu. On some variational principles in the theory of elasticity and the theory of plasticity. Scientia Sinica, 4:33–54, 1955.

    MATH  Google Scholar 

  34. S. Hüeber, M. Mair, and B. Wohlmuth. A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems. Applied Numerical Mathematics, 54:555–576, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  35. S. Hüeber, A. Matei, and B. Wohlmuth. Efficient algorithms for problems with friction. Technical Report 007, Universität Stuttgart SFB 404, 2005. To appear in SIAM Journal on Scientific Computing.

    Google Scholar 

  36. S. Hüeber, A. Matei, and B. Wohlmuth. A mixed variational formulation and an optimal a priori error estimate for a frictional contact problem in elasto-piezoelectricity. Bulletin Mathématique de la Sociéeté des Sciences Mathématiques de Roumanie, 48(96)(2):209–232, 2005.

    MATH  Google Scholar 

  37. S. Hüeber, G. Stadler, and B. Wohlmuth. A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction. Technical report, Pré-publicações do Departamento de Matemática da Universidade de Coimbra 06-16, 2006.

    Google Scholar 

  38. S. Hüeber and B. Wohlmuth. An optimal a priori error estimate for non-linear multibody contact problems. SIAM Journal on Numerical Analysis, 43(1):157–173, 2005.

    Article  Google Scholar 

  39. S. Hüeber and B. Wohlmuth. A primal-dual active set strategy for non-linear multibody contact problems. Computer Methods in Applied Mechanics and Engineering, 194:3147–3166, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  40. S. Hüeber and B. Wohlmuth. Mortar methods for contact problems. In P. Wriggers and U. Nackenhorst, editors, Analysis and Simulation of Contact Problems, volume 27 of Lecture Notes in Applied and Computational Mechanics, pages 39–47. Springer-Verlag, Berlin, 2006.

    Chapter  Google Scholar 

  41. Y. Jang and P. Eberhard. An experimental and numerical study of deformable bodies contact. In Proceedings of Applied Mathematics and Mechanics, 2006. Submitted for publication.

    Google Scholar 

  42. K. Johnson. Contact Mechanics. Cambridge University Press, Cambridge, 1985.

    MATH  Google Scholar 

  43. E. Kasper and R. Taylor. A mixed-enhanced strain method. Part I: geometrically linear problems. Computers and Structures, 75:237–250, 2000.

    Article  Google Scholar 

  44. A. Kharaz, D. Gorham, and A. Salman. An experimental study of the elastic rebound of spheres. Powder Technology, 120(3):281–291, 2001.

    Article  Google Scholar 

  45. N. Kikuchi and J. Oden. Contact problems in elasticity: A study of variational inequalities and finite element methods. SIAM Studies in Applied Mathematics 8, Philadelphia, 1988.

    Google Scholar 

  46. L. Labous, A. Rosato, and R. Dave. Measurements of collisional properties of spheres using high-speed video analysis. Physical Review E, 56:5717–5725, 1997.

    Article  Google Scholar 

  47. P. Ladevèze and D. Leguillon. Error estimate procedure in the finite element method and applications. SIAM Journal on Numerical Analysis, 20(3):485–509, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  48. B. Lamichhane, B. Reddy, and B. Wohlmuth. Convergence in the incompressible limit of finite element approximations based on the Hu-Washizu formulation. Technical Report 05, University of Stuttgart, SFB 404, 2004.

    Google Scholar 

  49. T. Laursen. Computational Contact and Impact Mechanics. Springer-Verlag, Berlin, 2002.

    MATH  Google Scholar 

  50. T. Laursen and V. Chawla. Design of energy conserving algorithms for frictionless dynamic contact problems. International Journal for Numerical Methods in Engineering, 40:836–886, 1997.

    Article  MathSciNet  Google Scholar 

  51. K. Lhalouani and T. Sassi. Nonconfirming mixed variational inequalities and domain decomposition for unilateral problems. East-West Journal of Numerical Mathematics, 7:23–30, 1999.

    MATH  MathSciNet  Google Scholar 

  52. A. Lorenz, C. Tuozzolo, and M. Louge. Measurements of impact properties of small, nearly spherical particles. Experimental Mechanics, 37(3):292–298, 1997.

    Article  Google Scholar 

  53. N. Maw, J. Barber, and J. Fawcett. The oblique impact of elastic spheres. Wear, 38(1):101–114, 1976.

    Article  Google Scholar 

  54. N. Maw, J. Barber, and J. Fawcett. The role of elastic tangential compliance in oblique impact. Journal of Lubrication Technology, 103:74–80, 1981.

    Google Scholar 

  55. R. Mindlin and H. Deresiewicz. Elastic spheres in contact under varying oblique forces. Journal of Applied Mechanics, 20:327–344, 1953.

    MATH  MathSciNet  Google Scholar 

  56. S. Nicaise, K. Witowski, and B. Wohlmuth. An a posteriori error estimator for the lamé equation based on H (div)-conforming stress approximations. Technical Report 005, University of Stuttgart, SFB 404, 2006.

    Google Scholar 

  57. F. Pfeiffer and C. Glocker. Multibody Dynamics with Unilateral Contacts. John Wiley & Sons, New York, 1996.

    MATH  Google Scholar 

  58. W. Schiehlen. Multibody system dynamics: Roots and perspectives. Multibody System Dynamics, 1(2):149–188, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  59. W. Schiehlen, R. Seifried, and P. Eberhard. Elastoplastic phenomena in multibody impact dynamics. Computer Methods in Applied Mechanics and Engineering, 2006 (accepted for publication).

    Google Scholar 

  60. J. Sears. On the longitudinal impact of metal rods with rounded ends. Transactions of the Cambridge Philosophical Society, 21:49–106, 1912.

    Google Scholar 

  61. R. Seifried, B. Hu, and P. Eberhard. Numerical and experimental investigation of radial impacts on a half-circular plate. Multibody System Dynamics, 9(3):265–281, 2003.

    Article  MATH  Google Scholar 

  62. A. Shabana. Flexible multibody dynamics: Review of past and recent developments. Multibody System Dynamics, 1(2):189–222, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  63. J. Simo and N. Tarnow. The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Zeitschrift für Angewandte Mathematik und Physik, 43(5):757–792, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  64. J. Solberg and P. Papadopoulos. An analysis of dual formulations for the finite element solution of two-body contact problems. Computer Methods in Applied Mechanics and Engineering, 194:2734–1780, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  65. R. Sondergaard, K. Chaney, and C. Brennen. Measurements of solid spheres bouncing off flat plates. Journal of Applied Mechanics, 57:694–699, 1990.

    Google Scholar 

  66. G. Stadler. Semismooth Newton and augmented Lagrangian methods for a simplified friction problem. SIAM Journal on Optimization, 15(1):39–62, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  67. Stemmer Imaging GmbH. Common Vision Blox-Tool: ShapeFinder. Stemmer Imaging GmbH, 2003.

    Google Scholar 

  68. W. Stronge. Impact Mechanics. Cambridge University Press, 2000.

    Google Scholar 

  69. O. Walton. Numerical simulation of inelastic, frictional particle-particle interactions. In M. Roco, editor, Particulate Two Phase Flow, pages 884–911. Butterworth-Heinemann, Boston, 1993.

    Google Scholar 

  70. K. Washizu. Variational methods in elasticity and plasticity. Pergamon Press, Oxford, 1982.

    MATH  Google Scholar 

  71. K. Willner. Kontinuums-und Kontaktmechanik. Springer-Verlag, Berlin, 2003.

    Google Scholar 

  72. B. Wohlmuth. A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM Journal on Numerical Analysis, 38:989–1012, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  73. B. Wohlmuth. Discretization Methods and Iterative Solvers Based on Domain Decomposition. Springer, 2001.

    Google Scholar 

  74. B. Wohlmuth. A V-cycle multigrid approach for mortar finite elements. SIAM Journal on Numerical Analysis, 42:2476–2495, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  75. B. Wohlmuth and R. Krause. Monotone methods on non-matching grids for non linear contact problems. SIAM Journal on Scientific Computing, 25:324–347, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  76. P. Wriggers. Computational Contact Mechanics. John Wiley & Sons, Chichester, 2002.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eberhard, P., Hüeber, S., Jiang, Y., Wohlmuth, B.I. (2006). Multilevel Numerical Algorithms and Experiments for Contact Dynamics. In: Helmig, R., Mielke, A., Wohlmuth, B.I. (eds) Multifield Problems in Solid and Fluid Mechanics. Lecture Notes in Applied and Computational Mechanics, vol 28. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-34961-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34961-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34959-4

  • Online ISBN: 978-3-540-34961-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics