Skip to main content

Multiscale Modeling of Anisotropies in Single Crystals and Polycrystals at Finite Strains

  • Chapter
Multifield Problems in Solid and Fluid Mechanics

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 28))

  • 1454 Accesses

Summary

The paper provides an overview about recent developments in the multiscale analysis of the anisotropic material behavior of single crystals and polycrystals. We outline a distinct incremental variational formulation for the local constitutive response of standard dissipative materials where an incremental stress potential is obtained from a local minimization problem with respect to the internal variables. This potential allows for the formulation of IBVPs for standard dissipative solids as a sequence of incremental minimization problems. Particular emphasis is put on crystal plasticity where we develop alternative stress update algorithms for Schmid-type single crystal plasticity with potential hardening. Furthermore the variational setting provides for the formulation of a canonical framework of nonlinear homogenization of standard dissipative microstructures where a quasi-hyperelastic incremental macro-stress potential is obtained from a global minimization problem with respect to the fine-scale displacement fluctuation field. Finally we extend the framework of standard local crystal plasticity to the setting of dislocation density based gradient plasticity for inhomogeneously deforming crystals. Here we equip the formulation with a sound micromechanical basis where an incompatibility induced storage of geometrically necessary dislocations results in a scale dependent material behavior. The performance of the formulations is demonstrated for benchmarks of single crystal and polycrystal plasticity as well as thin films.

Research Project A8 “Numerical Simulation of Thermo-Mechanical Deformation Processes of Heterogeneous Materials with the Concept of Micro-Macro- Transitions”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Acharya and J. L. Bassani. Lattice incompatibility and a gradient theory of crystal plasticity. Journal of the Mechanics and Physics of Solids, 48:1565–1595, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Anand and M. Kothari. A computational procedure for rate-independent crystal plasticity. Journal of the Mechanics and Physics of Solids, 44:525–558, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Arsenlis and D. M. Parks. Crystallographic aspects of geometricallynecessary and statistically-stored dislocation density. Acta Materialia, 47:1597–1611, 1999.

    Article  Google Scholar 

  4. J. L. Bassani. Plastic flow of crystals. Advances in Applied Mechanics, 30:191–258, 1993.

    Google Scholar 

  5. M. Becker. Incompatibility and Instability Based Size Effects in Crystals and Composites at Finite Elastoplastic Strains. PhD thesis, Institut für Mechanik (Bauwesen), Report No. I-18, Universität Stuttgart, 2006.

    Google Scholar 

  6. B. A. Bilby, R. Bullough, and E. Smith. Continuous distributions of dislocations: a new application of the methods of non-riemannian geometry. Proceedings of the Royal Society London A, 231:263–273, 1955.

    Article  MathSciNet  Google Scholar 

  7. M. A. Biot. Mechanics of Incremental Deformations. John Wiley & Sons, Inc., New York, 1965.

    Google Scholar 

  8. C. A. Bronkhorst, S. R. Kalidindi, and L. Anand. Polycrystalline plasticity and the evolution of crystallographic texture in f.c.c. metals. Philosophical Transactions of the Royal Society London, 341:443–477, 1992.

    Google Scholar 

  9. P. Cermelli and M. E. Gurtin. On the characterization of geometrically necessary dislocations in finite plasticity. Journal of the Mechanics and Physics of Solids, 49:1539–1568, 2001.

    Article  MATH  Google Scholar 

  10. A. M. Cuitiño and M. Ortiz. Computational modeling of single crystals. Modelling and Simulation in Materials Science and Engineering, 1:225–263, 1992.

    Article  Google Scholar 

  11. H. Dai and D. M. Parks. Geometrically-necessary dislocation density and scaledependent crystal plasticity. Plasticity’ 97, pages 17–18, 1997.

    Google Scholar 

  12. L. P. Evers, W. A. M. Brekelmans, and M. G. D. Geers. Non-local crystal plasticity model with intrinsic ssd and gnd effects. Journal of the Mechanics and Physics of Solids, 52:2379–2401, 2004.

    Article  MATH  Google Scholar 

  13. N. A. Fleck, G. M. Müller, M. F. Ashby, and J. Hutchinson. Strain gradient plasticity: theory and experiment. Acta Materialia, 42:475–487, 1994.

    Article  Google Scholar 

  14. P. Franciosi and A. Zaoui. Multislip in f.c.c. crystals: a theoretical approach compared with experimental data. Acta Metallurgica, 30:1627–1637, 1982.

    Article  Google Scholar 

  15. M. E. Gurtin. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. Journal of the Mechanics and Physics of Solids, 50:5–32, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  16. E. O. Hall. The deformation and aging of mild steel. part iii: discussion and results. Proceedings of the Physical Society of London, 64:747–753, 1951.

    Article  Google Scholar 

  17. B. Halphen and Q. S. Nguyen. Sur les matéraux standards généralisés. Journal de Mécanique, 40:39–63, 1975.

    Google Scholar 

  18. R. Hill. Generalized constitutive relations for incremental deformation of metal crystals by multislip. Journal of the Mechanics and Physics of Solids, 14:95–102, 1966.

    Article  Google Scholar 

  19. R. Hill. On constitutive macro-variables for heterogeneous solids at finite strain. Proceedings of the the Royal Society of London, Series A, 326:131–147, 1972.

    MATH  Google Scholar 

  20. R. W. K. Honeycombe. The plastic deformation of metals. Edward Arnold, London, 2nd edition, 1984.

    Google Scholar 

  21. J. W. Hutchinson. Elastic-plastic behaviour of polycrystalline metals and composites. Proceedings of the the Royal Society of London, Series A, 319:247–272, 1970.

    Google Scholar 

  22. U. F. Kocks. A statistical theory of flow stress and work-hardening. The Philosophical Magazine, 13:541–566, 1966.

    Google Scholar 

  23. W. T. Koiter. General theorems of elasto-plastic solids, Progress in Solid Mechanics. I. N. Sneddon; R. Hill (editors), North Holland Publishing Company, 1960.

    Google Scholar 

  24. K. Kondo. On the geometrical and physical foundations of the theory of yielding. Proceedings Japan National Congress of Applied Mechanics, 2:41–47, 1952.

    Google Scholar 

  25. E. Kröner. Allgemeine kontinuumstheorie der versetzungen und eigenspannungen. Archive for Rational Mechanics and Analysis, 4:273–334, 1960.

    MATH  MathSciNet  Google Scholar 

  26. E. Kröner and C. Teodosiu. Lattice defect approach to plasticity and viscoplasticity. In A. Sawzuk, editor, Problems in Plasticity. Nordhoff International Publishing, 1972.

    Google Scholar 

  27. L. P. Kubin, G. Canova, M. Condat, B. Devincre, V. Pontikis, and Y. Brechet. Dislocation microstructures and plastic flow: a 3d simulation. Solid State Phenomena, 23/24:455–472, 1992.

    Article  Google Scholar 

  28. T. Liebe and P. Steinmann. Theory and numerics of a thermomechanically consistent framework for geometrically linear gradient plasticity. International Journal for Numerical Methods in Engineering, 51:1437–1467, 2001.

    Article  MATH  Google Scholar 

  29. J. Mandel. Plasticité clasique et viscoplasticité. In CISM Courses and Lectures, No. 97. Springer, 1972.

    Google Scholar 

  30. J. B. Martin. Plasticity. Fundamentals and General Results. MIT press, Cambridge, Massachusetts, 1975.

    Google Scholar 

  31. A. Menzel, R. Denzer, and P. Steinmann. On the comparison of two approaches to compute material forces for inelastic materials. application to single-slip crystal-plasticity. Computer Methods in Applied Mechanics and Engineering, 193:5411–5428, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  32. C. Miehe. Exponential map algorithm for stress updates in anisotropic multiplicative elastoplasticity for single crystals. International Journal for Numerical Methods in Engineering, 39:3367–3390, 1996.

    Article  MATH  Google Scholar 

  33. C. Miehe. Multisurface thermoplasticity for single crystals at large strains in terms of eulerian vector updates. International Journal of Solids and Structures, 33:3103–3130, 1996.

    Article  MATH  Google Scholar 

  34. C. Miehe. Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. International Journal for Numerical Methods in Engineering, 55:1285–1322, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  35. C. Miehe. Computational micro-to-macro transitions for discretized microstructures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy. Computer Methods in Applied Mechanics and Engineering, 192:559–591, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  36. C. Miehe and M. Becker. Homogenization analysis in finite plasticity. Material and structural instabilities on the micro-and macro-scales and their interaction. submitted to International Journal of Solids and Structures, 2006.

    Google Scholar 

  37. C. Miehe and M. Becker. Incompatibility based strain gradient crystal plasticity. submitted to Computer Methods in Applied Mechanics and Engineering, 2006.

    Google Scholar 

  38. C. Miehe, M. Becker, and E. Gürses. Numerical computation of anisotropically evolving yield surfaces for polycrystals. submitted to Acta Mechanica, 2006.

    Google Scholar 

  39. C. Miehe and J. Schotte. Anisotropic finite elastoplastic analysis of shells: Simulation of earing in deep-drawing of single-and polycrystalline sheets by taylortype micro-to-macro transitions. Computer Methods in Applied Mechanics and Engineering, 193:25–57, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  40. C. Miehe and J. Schotte. Crystal plasticity and evolution of polycrystalline microstructure. In E. Stein, R. de Borst, and J. R. Hughes, editors, Encyclopedia of Computational Mechanics, chapter 8, pages 267–289. John Wiley & Sons, 2004.

    Google Scholar 

  41. C. Miehe, J. Schotte, and M. Lambrecht. Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to the texture analysis of polycrystals. Journal of the Mechanics and Physics of Solids, 50:2123–2167, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  42. C. Miehe, J. Schröder, and J. Schotte. Computational homogenization analysis in finite plasticity. simulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering, 171(3–4):387–418, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  43. S. Müller. Homogenization of nonconvex integral functionals and cellular elastic materials. Archive of Rational Mechanics and Analysis, 99:189–212, 1987.

    Article  MATH  Google Scholar 

  44. S. Nemat-Nasser and M. Hori. Micromechanics: overall properties of heterogeneous materials, volume 36 of North-Holland series in applied mathematics and mechanics. Elsevier Science Publisher B.V., 2. edition, 1999.

    Google Scholar 

  45. J. F. Nye. Some geometrical relations in dislocated crystals. Acta Metallurgica, 1:153–162, 1953.

    Article  Google Scholar 

  46. M. Ortiz and E. A. Repetto. Nonconvex energy minimization and dislocation structures in ductile single crystals. Journal of the Mechanics and Physics of Solids, 47:397–462, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  47. M. Ortiz and L. Stainier. The variational formulation of viscoplastic constitutive updates. Computer Methods in Applied Mechanics and Engineering, 171:419–444, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  48. D. Peirce, R. Asaro, and A. Needleman. An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metallurgica, 30:1087–1119, 1982.

    Article  Google Scholar 

  49. N. J. Petch. The cleavage strength of polycrystals. Journal of the Iron and Steel Institute, 174:25–28, 1953.

    Google Scholar 

  50. P. Ponte Castañeda and P. Suquet. Nonlinear composites. Advances in Applied Mechanics, 34:171–303, 1998.

    Article  MATH  Google Scholar 

  51. J. Rice. Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. Journal of the Mechanics and Physics of Solids, 19:433–455, 1971.

    Article  MATH  Google Scholar 

  52. J. Y. Shu, N. A. Fleck, E. Van der Giessen, and A. Needleman. Boundary layers in constrained plastic flow: comparison of nonlocal and discrete dislocation plasticity. Journal of the Mechanics and Physics of Solids, 49:1361–1395, 2001.

    Article  MATH  Google Scholar 

  53. P. Steinmann. Views on multiplicative elastoplasticity and the continuum theory of dislocations. International Journal of Engineering Science, 34:1717–1735, 1996.

    Article  MATH  Google Scholar 

  54. P. Suquet. Elements of homogenization for inelastic solid mechanics. In E. Sanchez-Palenzia and A. Zaoui, editors, Lecture Notes in Physics: Homogenization Techniques for Composite Materials, pages 193–278. Springer-Verlag, vol. 272 edition, 1987.

    Google Scholar 

  55. B. Svendsen. Continuum thermodynamic models for crystal plasticity including the effects of geometrically-necessary dislocations. Journal of the Mechanics and Physics of Solids, 50:1297–1329, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  56. G. I. Taylor. Plastic strain in metals. Journal of the Institute of Metals, 62:307–324, 1938.

    Google Scholar 

  57. G. E. G. Tucker. Texture and earing in deep drawing of aluminum. Acta Metallurgica, 9:275–286, 1961.

    Article  Google Scholar 

  58. E. Van der Giessen and A. Needleman. Discrete dislocation plasticity: a simple planar model. Modelling and Simulation in Materials Science and Engineering, 3:689–735, 1995.

    Article  Google Scholar 

  59. G. Weber and L. Anand. Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Computer Methods in Applied Mechanics and Engineering, 79:173–202, 1990.

    Article  MATH  Google Scholar 

  60. H. Ziegler. Some extremum principles in irreversible thermodynamics with application to continuum mechanics. In I. N. Sneddon and R. Hill, editors, Progress in Solid Mechanics, Vol. IV. North-Holland Publishing Company, Amsterdam, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miehe, C., Becker, M. (2006). Multiscale Modeling of Anisotropies in Single Crystals and Polycrystals at Finite Strains. In: Helmig, R., Mielke, A., Wohlmuth, B.I. (eds) Multifield Problems in Solid and Fluid Mechanics. Lecture Notes in Applied and Computational Mechanics, vol 28. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-34961-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34961-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34959-4

  • Online ISBN: 978-3-540-34961-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics