Skip to main content

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 28))

Summary

Particle suspensions are ubiquitous in our daily life, but are not well understood due to their complexity. During the last twenty years, various simulation methods have been developed in order to model these systems. Due to varying properties of the solved particles and the solvents, one has to choose the simulation method properly in order to use the available compute resources most effectively with resolving the system as well as needed. Various techniques for the simulation of particle suspensions have been implemented at the Institute for Computational Physics allowing us to study the properties of clay-like systems, where Brownian motion is important, more macroscopic particles like glass spheres or fibers solved in liquids, or even the pneumatic transport of powders in pipes. In this paper we will present the various methods we applied and developed and discuss their individual advantages.

Research Project A7 “Microscopic Simulations of Suspensions — Analysis of Local Behavior of Polydisperse Systems and Nonspherical Particles”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Adhikari, M. E. Cates, K. Stratford, and A. Wagner. Fluctuating lattice boltzmann. condmat/0402598, 2005.

    Google Scholar 

  2. P. Ahlrichs, R. Everaers, and B. Dünweg. Screening of hydrodynamic interactions in semidilute polymer solutions: A computer simulation study. Phys. Rev. E, 64(4):040501, 2001.

    Article  Google Scholar 

  3. M. P. Allen and D. J. Tildesley. Computer simulation of liquids. Oxford Science Publications. Clarendon Press, 1987.

    Google Scholar 

  4. P. L. Bhatnagar, E. P. Gross, and M. Krook. Model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev., 94(3):511–525, 1954.

    Article  MATH  Google Scholar 

  5. L. Bocquet, E. Trizac, and M. Aubouy. Effective charge saturation in colloidal suspensions. J. Chem. Phys., 117:8138, 2002.

    Article  Google Scholar 

  6. E. S. Boek, P. V. Coveney, H. N. W. Lekkerkerker, and P. van der Schoot. Simulating the rheology of dense colloidal suspensions using dissipative particle dynamics. Phys. Rev. E, 55(3):3124–3133, 1997.

    Article  Google Scholar 

  7. G. Bossis and J. Brady. Dynamic simulation of sheared suspensions. i. general method. J. Chem. Phys., 80(10):5141–5154, 1984.

    Article  Google Scholar 

  8. J. Brady and G. Bossis. Stokesian dynamics. Ann. Rev. Fluid Mech., 20:111–157, 1988.

    Article  Google Scholar 

  9. P. Carman. Fluid flow through granular beds. Trans. Inst. Chem. Engng., 26:150–166, 1937.

    Google Scholar 

  10. S. Chapman and T. G. Cowling. The Mathematical Theory of Non-uniform Gases. Cambridge University Press, second edition, 1952.

    Google Scholar 

  11. S. Chen and G. Doolen. Lattice-boltzmann method for fluid flows. Ann. Rev. Fluid Mech., 30:329–364, 1998.

    Article  MathSciNet  Google Scholar 

  12. P. Cundall and D. Strack. Discrete numerical-model for granular assemblies. Geotechnique, 29:47–65, 1979.

    Article  Google Scholar 

  13. H. d’Arcy. Les fontaines publiques de la ville de Dijon. Victor Dalmont, 1856.

    Google Scholar 

  14. P. Español. A fluid particle model. Phys. Rev. E, 57(3):2390–2948, 1998.

    Article  Google Scholar 

  15. P. Español and P. Warren. Statistical mechanics of dissipative particle dynamics. Europhys. Lett., 30(4):191–196, 1995.

    Google Scholar 

  16. E. Falck, J. M. Lahtinen, I. Vattulainen, and T. Ala-Nissila. Influence of hydrodynamics on many-particle diffusion in 2d colloidal suspensions. Eur. Phys. J. E, 13:267–275, 2004.

    Article  Google Scholar 

  17. A. Fogelson and C. Peskin. A fast numerical method for solving the three-dimensional stokes equations in the presence of suspended particles. J. Comput. Phys., 79:50, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  18. F. Fonseca and H. J. Herrmann. Sedimentation of oblate ellipsoids at low and moderate reynolds numbers. Physica A, 342:447–461, 2004.

    Article  Google Scholar 

  19. F. Fonseca and H. J. Herrmann. Simulation of the sedimentation of a falling oblate ellipsoid. Physica A, 345:341–355, 2005.

    Google Scholar 

  20. U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet. Lattice gas hydrodynamics in two and three dimensions. Complex Systems, 1:649–707, 1987.

    MATH  MathSciNet  Google Scholar 

  21. U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett., 56(14):1505–1508, 1986.

    Article  Google Scholar 

  22. J. Harting, M. Harvey, J. Chin, M. Venturoli, and P. V. Coveney. Large-scale lattice boltzmann simulations of complex fluids: advances through the advent of computational grids. Phil. Trans. R. Soc. A, 363:1895–1915, 2005.

    Article  Google Scholar 

  23. M. Hecht, J. Harting, M. Bier, J. Reinshagen, and H. J. Herrmann. Shear viscosity of clay-like colloids: Computer simulations and experimental verification. submitted to Phys. Rev. E, 2006. cond-mat/0601413.

    Google Scholar 

  24. M. Hecht, J. Harting, T. Ihle, and H. J. Herrmann. Simulation of claylike colloids. Physical Review E, 72:011408, 2005.

    Article  Google Scholar 

  25. K. Höfler and S. Schwarzer. Navier-stokes simulation with constraint forces: Finite-difference method for particle-laden flows and complex geometries. Phys. Rev. E, 61:7146, 2000.

    Article  Google Scholar 

  26. R. J. Hunter. Foundations of colloid science. Oxford University Press, 2001.

    Google Scholar 

  27. M. Hütter. Brownian Dynamics Simulation of Stable and of Coagulating Colloids in Aqueous Suspension. PhD thesis, Swiss Federal Institute of Technology Zurich, 1999.

    Google Scholar 

  28. M. Hütter. Local structure evolution in particle network formation studied by brownian dynamics simulation. Journal of Colloid and Interface Science, 231:337–350, 2000.

    Article  Google Scholar 

  29. T. Ihle and D. M. Kroll. Stochastic rotation dynamics: A galilean-invariant mesoscopis model for fluid flow. Phys. Rev. E, 63:020201(R), 2001.

    Google Scholar 

  30. T. Ihle and D. M. Kroll. Stochastic rotation dynamics i: Formalism, galilean invariance, green-kubo relations. Phys. Rev. E, 67:066705, 2003.

    Article  Google Scholar 

  31. T. Ihle and D. M. Kroll. Stochastic rotation dynamics ii: Transport coefficients, numerics, long time tails. Phys. Rev. E, 67:066706, 2003.

    Article  Google Scholar 

  32. T. Ihle, E. Tuzel, and D. M. Kroll. Resummed green-kubo relations for a fluctuating fluid-particle model. Phys. Rev. E, 70:035701(R), 2004.

    Google Scholar 

  33. Y. Inoue, Y. Chen, and H. Ohashi. Development of a simulation model for solid objects suspended in a fluctuating fluid. J. Stat. Phys., 107(1):85–100, 2002.

    Article  MATH  Google Scholar 

  34. N. Kikuchi, C. M. Pooley, J. F. Ryder, and J. M. Yeomans. Transport coefficients of a mesoscopic fluid dynamics model. J. Chem. Phys., 119(12):6388–95, 2003.

    Article  Google Scholar 

  35. A. Komnik, J. Harting, and H. J. Herrmann. Transport phenomena and structuring in shear flow of suspensions near solid walls. J. Stat. Mech: Theor. Exp., P12003, 2004.

    Google Scholar 

  36. K. Konrad and T. Totah. Vertical pneumatic conveying or particle plug. Canadian Journal of Chemical Engineering, 67:245–252, 1989.

    Article  Google Scholar 

  37. E. Kuusela, K. Höfler, and S. Schwarzer. Computation of settling speed and orientation distribution in suspensions of prolate spheroids. J. Eng. Math., 41:221, 2001.

    Article  MATH  Google Scholar 

  38. A. J. C. Ladd. Numerical simulations of particulate suspensions via a discretized boltzmann equation. part 1. theoretical foundation. J. Fluid Mech., 271:285–309, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  39. A. J. C. Ladd. Numerical simulations of particulate suspensions via a discretized boltzmann equation. part 2. numerical results. J. Fluid Mech., 271:311–339, 1994.

    Article  MathSciNet  Google Scholar 

  40. A. J. C. Ladd and R. Verberg. Lattice-boltzmann simulations of particle-fluid suspensions. J. Stat. Phys., 104(5):1191, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  41. G. Lagaly, O. Schulz, and R. Zimehl. Dispersionen und Emulsionen. Dr. Dietrich Steinkopff Verlag, Darmstadt, Germany, 1997.

    Google Scholar 

  42. A. Lamura, G. Gompper, T. Ihle, and D. M. Kroll. Multi-particle-collision dynamics: Flow around a circular and a square cylinder. Eur. Phys. Lett, 56:319, 2001.

    Article  Google Scholar 

  43. J. A. Lewis. Colloidal processing of ceramics. J. Am. Ceram. Soc., 83:2341–59, 2000.

    Article  Google Scholar 

  44. M. Loewenberg and E. Hinch. Numerical simulation of a concentrated emulsion in shear flow. J. Fluid. Mech., 321:395–419, 1996.

    Article  MATH  Google Scholar 

  45. J. Mahanty and B. W. Ninham. Dispersion Forces. Academic Press, London, 1996.

    Google Scholar 

  46. A. Malevanets and R. Kapral. Mesoscopic model for solvent dynamics. J. Chem. Phys., 110:8605, 1999.

    Article  Google Scholar 

  47. A. Malevanets and R. Kapral. Solute dynamics in mesoscale solvent. J. Chem. Phys., 112:7260, 2000.

    Article  Google Scholar 

  48. S. McNamara, E. Flekkøy, and K. Måløy. Grains and gas flow: Molecular dynamics with hydrodynamic interaction. Phys. Rev. E, 61:658–670, 2000.

    Article  Google Scholar 

  49. J. Melrose and R. Ball. “contact networks” in continuously shear thickening colloids. J. Rheo., 48(5):961–978, 2004.

    Article  Google Scholar 

  50. J. Melrose and R. Ball. Continuous shear thickening transitions in model concentrated colloids — the role of inter-particle forces. Journal of Rheology, 48(5):937–960, 2004.

    Article  Google Scholar 

  51. P. Mijatović. Bewegung asymmetrischer Teilchen unter stochastischen Kräften. Master-thesis, Universität Stuttgart, 2002.

    Google Scholar 

  52. I. D. Morrison and S. Ross. Colloidal Dispersions: Suspensions, Emulsions and Foams. John Wiley and Sons, New York, 2002.

    Google Scholar 

  53. N. Q. Nguyen and A. J. C. Ladd. Lubrication corrections for lattice-boltzmann simulations of particle suspensions. Phys. Rev. E, 66(4):046708, 2002.

    Article  Google Scholar 

  54. R. Oberacker, J. Reinshagen, H. von Both, and M. J. Hoffmann. Ceramic slurries with bimodal particle size distributions: Rheology, suspension structure and behaviour during pressure filtration. Ceramic Transactions, 112:179–184, 2001.

    Google Scholar 

  55. D. Petera and M. Muthukumar. Brownian dynamics simulation of bead-rod chains under shear with hydrodynamic interaction. J. Chem. Phys, 111(16):7614–7623, 1999.

    Article  Google Scholar 

  56. T. Phung, J. Brady, and G. Bossis. Stokesian dynamics simulation of brownian suspensions. J. Fluid Mech., 313:181–207, 1996.

    Article  Google Scholar 

  57. T. Pöschel. Granular material flowing down an inclined chute: a molecular dynamics simulation. J. Phys. II, 3(1):27–40, 1993.

    Article  Google Scholar 

  58. J. Reinshagen, R. C. D. Cruz, R. Oberacker, and J. Hoffmann. Electrostatically stabilized alumina suspensions with defined interparticle potentials: I. influence of salt concentration on suspension conductivity and rheology. submitted, 2005.

    Google Scholar 

  59. S. Richter and G. Huber. Resonant column experiments with fine-grained model material — evidence of particle surface forces. Granular Matter, 5:121–128, 2003.

    Article  Google Scholar 

  60. M. Ripoll, K. Mussawisade, R. G. Winkler, and G. Gompper. Low-reynolds-number hydrodynamics of complex fluids by multi-particle-collision dynamics. Europhys. Lett., 68:106–12, 2004.

    Article  Google Scholar 

  61. W. B. Russel, D. A. Saville, and W. Schowalter. Colloidal Dispersions. Cambridge Univ. Press., Cambridge, 1995.

    MATH  Google Scholar 

  62. K. S. Schmitz. Macroions in Solution and Colloidal Suspension. John Wiley and Sons, New York, 1993.

    Google Scholar 

  63. S. Schwarzer, K. Höfler, and B. Wachmann. Simulation of hindered settling in bidisperse suspensions of rigid spheres. Comp. Phys. Comm., 268:121–122, 1999.

    Google Scholar 

  64. D. J. Shaw. Introduction to Colloid and Surface Chemistry. Butterworth-Heinemann Ltd, Oxford, 1992.

    Google Scholar 

  65. W. Siegel. Pneumatische Förderung. Vogel, 1991.

    Google Scholar 

  66. A. Sierou and J. Brady. Accelerated stokesian dynamics simulations. J. Fluid Mech., 448:115–146, 2001.

    Article  MATH  Google Scholar 

  67. L. Silbert, J. Melrose, and R. Ball. Colloidal microdynamics: Pair-drag simulations of model-concentrated aggregated systems. Phys. Rev. E, 56(6):7067–7077, 1997.

    Article  Google Scholar 

  68. M. Strauß, H. Herrmann, S. McNamara, G. Niederreiter, and K. Sommer. Plug conveying in a vertical tube. Particle Technology, submitted, 2005.

    Google Scholar 

  69. M. Strauß, S. McNamara, and H. Herrmann. Plug conveying in a horizontal tube. Granular Matter, accepted, 2006.

    Google Scholar 

  70. E. Tuzel, M. Strauss, T. Ihle, and D. M. Kroll. Transport coefficients in three dimensional stochastic rotation dynamics. Phys. Rev. E, 68:036701, 2003.

    Article  Google Scholar 

  71. J. Vermant and M. J. Solomon. Flow-induced structure in colloidal suspensions. J. Phys.: Condens. Matter, 17:R187–R216, 2005.

    Article  Google Scholar 

  72. B. Wachmann and S. Schwarzer. Three dimensional massively parallel computing of suspensions. Int. J. of Modern Physics C, 9:759–776, 1998.

    Article  Google Scholar 

  73. G. Wang, P. Sarkar, and P. S. Nicholson. Surface chemistry and rheology of electrostatically (ionically) stabillized allumina suspensions in polar media. J. Am. Ceram. Soc., 82(4):849–56, 1999.

    Article  Google Scholar 

  74. R. G. Winkler, K. Mussawisade, M. Ripoll, and G. Gompper. Rod-like colloids and polymers in shear flow: a multi-particle-collision dynamics study. J. of Physics-Condensed Matter, 16(38):S3941–54, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harting, J., Hecht, M., Herrmann, H.J., McNamara, S. (2006). Computer Simulation of Particle Suspensions. In: Helmig, R., Mielke, A., Wohlmuth, B.I. (eds) Multifield Problems in Solid and Fluid Mechanics. Lecture Notes in Applied and Computational Mechanics, vol 28. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-34961-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34961-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34959-4

  • Online ISBN: 978-3-540-34961-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics