Skip to main content

Effective and Reliable Online Classification Combining XCS with EDA Mechanisms

  • Chapter
Scalable Optimization via Probabilistic Modeling

Part of the book series: Studies in Computational Intelligence ((SCI,volume 33))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernadó, E., Llorà, X., and Garrell, J. M. (2002). XCS and GALE: A comparative study of two learning classifier systems and six other learning algorithms on classification tasks. In Lanzi, P. L., Stolzmann, W., and Wilson, S. W., (Eds.), Advances in Learning Classifier Systems (LNAI 2321), pp. 115-132. Springer, Berlin Heidelberg New York

    Google Scholar 

  2. Bernadó-Mansilla, E. and Garrell-Guiu, J. M. (2003). Accuracy-based learning classifier systems: Models, analysis, and applications to classifi-cation tasks. Evolutionary Computation, 11:209-238

    Article  Google Scholar 

  3. Butz, M. V. (2004). Rule-based evolutionary online learning systems: Learning bounds, classification, and prediction. PhD thesis, University of Illinois at Urbana-Champaign, Urbana, IL

    Google Scholar 

  4. Butz, M. V. (2005a). Kernel-based, ellipsoidal conditions in the real-valued XCS classifier system. GECCO 2005: Genetic and Evolutionary Computation Conference: Vol. 2, pp. 1835-1842

    Google Scholar 

  5. Butz, M. V. (2005b). Rule-based evolutionary online learning systems: A principled approach to LCS analysis and design. Studies in Fuzziness and Soft Computing. Springer, Berlin Heidelberg New York

    Google Scholar 

  6. Butz, M. V. and Goldberg, D. E. (2004). Hierarchical classification prob-lems demand effective building block identification and processing in LCSs. IlliGAL report 2004017, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign

    Google Scholar 

  7. Butz, M. V., Goldberg, D. E., and Lanzi, P. L. (2005). Foundations of Learning Classifier Systems, Computational Complexity of the XCS Classifier System, pp. 91-126. Studies in Fuzziness and Soft Computing. Springer, Berlin Heidelberg New York

    Google Scholar 

  8. Butz, M. V., Goldberg, D. E., and Stolzmann, W. (2002). The antici-patory classifier system and genetic generalization. Natural Computing, 1:427-467

    Article  MATH  MathSciNet  Google Scholar 

  9. Butz, M. V., Goldberg, D. E., and Tharakunnel, K. (2003a). Analy-sis and improvement of fitness exploitation in XCS: Bounding models, tournament selection, and bilateral accuracy. Evolutionary Computation, 11:239-277

    Article  Google Scholar 

  10. Butz, M. V., Kovacs, T., Lanzi, P. L., and Wilson, S. W. (2001). How XCS evolves accurate classifiers. Proceedings of the Third Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 927-934

    Google Scholar 

  11. Butz, M. V., Kovacs, T., Lanzi, P. L., and Wilson, S. W. (2004a). Toward a theory of generalization and learning in XCS. IEEE Transactions on Evolutionary Computation, 8:28-46

    Article  Google Scholar 

  12. Butz, M. V., Sastry, K., and Goldberg, D. E. (2003b). Tournament selection in XCS. Proceedings of the Fifth Genetic and Evolutionary Computation Conference (GECCO-2003), pp. 1857-1869

    Google Scholar 

  13. Butz, M. V., Sastry, K., and Goldberg, D. E. (2004b). Strong, stable, and reliable fitness pressure in XCS due to tournament selection. Genetic Programming and Evolvable Machines, 6:53-77

    Article  Google Scholar 

  14. Butz, M. V. and Wilson, S. W. (2001). An algorithmic description of XCS. In Lanzi, P. L., Stolzmann, W., and Wilson, S. W., (Eds.), Advances in Learning Classifier Systems: Third International Workshop, IWLCS 2000 (LNAI 1996), pp. 253-272. Springer, Berlin Heidelberg New York

    Chapter  Google Scholar 

  15. Chickering, D. M., Heckerman, D., and Meek, C. (1997). A Bayesian approach to learning Bayesian networks with local structure. Technical Report MSR-TR-97-07, Microsoft Research, Redmond, WA

    Google Scholar 

  16. Cooper, G. F. and Herskovits, E. H. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9: 309-347

    MATH  Google Scholar 

  17. De Jong, K. A. and Spears, W. M. (1991). Learning concept classification rules using genetic algorithms. IJCAI-91 Proceedings of the Twelfth International Conference on Artificial Intelligence, pp. 651-656

    Google Scholar 

  18. Friedman, N. and Goldszmidt, M. (1999). Learning Bayesian networks with local structure. In Jordan, M. I., (Ed.), Graphical models, pp. 421-459. MIT, Cambridge, MA

    Google Scholar 

  19. Gérard, P. and Sigaud, O. (2003). Designing efficient exploration with MACS: Modules and function approximation. Proceedings of the Fifth Genetic and Evolutionary Computation Conference (GECCO-2003), pp. 1882-1893

    Google Scholar 

  20. Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Lawrence Erlbaum Associates, Mahwah, NJ

    Google Scholar 

  21. Goldberg, D. E. (2002). The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Kluwer Academic, Boston, MA

    MATH  Google Scholar 

  22. Harik, G. (1999). Linkage learning via probabilistic modeling in the ECGA. IlliGAL report 99010, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign

    Google Scholar 

  23. Heckerman, D., Geiger, D., and Chickering, D. M. (1994). Learning Bayesian networks: The combination of knowledge and statistical data. Technical Report MSR-TR-94-09, Microsoft Research, Redmond, WA

    Google Scholar 

  24. Howard, R. A. and Matheson, J. E. (1981). Influence diagrams. In Howard, R. A. and Matheson, J. E., (Eds.), Readings on the Princi-ples and Applications of Decision Analysis, Vol. 2, pp. 721-762. Strategic Decisions Group, Menlo Park, CA

    Google Scholar 

  25. Kovacs, T. (1996). Evolving optimal populations with XCS classifier systems. Master’s thesis, School of Computer Science, University of Birmingham, Birmingham, UK

    Google Scholar 

  26. Kovacs, T. (1997). XCS classifier system reliably evolves accurate, complete, and minimal representations for boolean functions. In Roy, Chawdhry, and Pant, (Eds.), Soft Computing in Engineering Design and Manufacturing, pp. 59-68. Springer, London Berlin Heidelberg New York

    Google Scholar 

  27. Kovacs, T. (2000). Strength or Accuracy? Fitness calculation in learning classifier systems. In Lanzi, P. L., Stolzmann, W., and Wilson, S. W., (Eds.), Learning Classifier Systems: From Foundations to Applications (LNAI 1813), pp. 143-160. Springer, Berlin Heidelberg New York

    Google Scholar 

  28. Kovacs, T. (2001). Towards a theory of strong overgeneral classifiers. Foundations of Genetic Algorithms 6, pp. 165-184

    Article  Google Scholar 

  29. Lobo, F. and Harik, G. (1999). Extended compact genetic algorithm in C++. IlliGAL report 99016, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign

    Google Scholar 

  30. Mühlenbein, H. (1992). How genetic algorithms really work: I.Mutation and Hillclimbing. In Männer, R. and Manderick, B., (Eds.), Parallel Problem Solving from Nature, pp. 15-25, Elsevier, Amsterdam Netherlands

    Google Scholar 

  31. Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto

    Google Scholar 

  32. Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo, CA

    Google Scholar 

  33. Pelikan, M. (2001). Bayesian optimization algorithm, decision graphs, and Occam’s razor. Proceedings of the Third Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 511-518

    Google Scholar 

  34. Pelikan, M. (2002). Bayesian optimization algorithm: From single level to hierarchy. PhD thesis, University of Illinois at Urbana-Champaign, Urbana, IL. Also IlliGAL Report No. 2002023

    Google Scholar 

  35. Pelikan, M., Goldberg, D. E., and Cantu-Paz, E. (1999). BOA: The Bayesian optimization algorithm. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), pp. 525-532

    Google Scholar 

  36. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6:461-464

    Article  MATH  MathSciNet  Google Scholar 

  37. Simon, H. A. (1969). Sciences of the Artificial. MIT, Cambridge, MA

    Google Scholar 

  38. Thierens, D. and Goldberg, D. E. (1993). Mixing in genetic algorithms.Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 38-45

    Google Scholar 

  39. Wilson, S. W. (1994). ZCS: A zeroth-level classifier system. Evolutionary Computation, 2:1-18

    Article  Google Scholar 

  40. Wilson, S. W. (1995). Classifier fitness based on accuracy. Evolutionary Computation, 3(2):149-175

    Article  Google Scholar 

  41. Wilson, S. W.(1998). Generalization in the XCS classifier system. Genetic Programming 1998: Proceedings of the Third Annual Conference, pp. 665-674

    Google Scholar 

  42. Wilson, S. W. (2001). Mining oblique data with XCS. In Lanzi, P. L., Stolzmann, W., and Wilson, S. W., (Eds.), Advances in Learning Classifier Systems: Third International Workshop, IWLCS 2000 (LNAI 1996), pp. 158-174. Springer, Berlin Heidelberg New York

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Butz, M., Pelikan, M., Llorà, X., Goldberg, D.E. (2006). Effective and Reliable Online Classification Combining XCS with EDA Mechanisms. In: Pelikan, M., Sastry, K., CantúPaz, E. (eds) Scalable Optimization via Probabilistic Modeling. Studies in Computational Intelligence, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34954-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34954-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34953-2

  • Online ISBN: 978-3-540-34954-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics