Phospholipase C-Coupled Receptors and Activation of TRPC Channels

  • M. Trebak
  • L. Lemonnier
  • J. T. Smyth
  • G. Vazquez
  • J. W. PutneyJr.
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 179)


The canonical transient receptor potential (TRPC) cation channels are mammalian homologs of the photoreceptor channel TRP in Drosophila melanogaster. All seven TRPCs (TRPC1 through TRPC7) can be activated through Gq/11 receptors or receptor tyrosine kinase (RTK) by mechanisms downstream of phospholipase C. The last decade saw a rapidly growing interest in understanding the role of TRPC channels in calcium entry pathways as well as in understanding the signal(s) responsible for TRPC activation. TRPC channels have been proposed to be activated by a variety of signals including store depletion, membrane lipids, and vesicular insertion into the plasma membrane. Here we discuss recent developments in the mode of activation as well as the pharmacological and electrophysiological properties of this important and ubiquitous family of cation channels.


Ion channels TRPC channels Nonselective cation channel Store-operated channel Phospholipase C 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bahner M, Frechter S, Da SN, Minke B, Paulsen R, Huber A (2002) Light-regulated subcellular translocation of Drosophila TRPL channels induces long-term adaptation and modifies the light-induced current. Neuron 34:83–93PubMedCrossRefGoogle Scholar
  2. Barritt GJ (1999) Receptor-activated Ca2+ inflow in animal cells: a variety of pathways tailored to meet different intracellular Ca2+ signalling requirements. Biochem J 337:153–169PubMedCrossRefGoogle Scholar
  3. Basora N, Boulay G, Bilodeau L, Rousseau E, Payet MD (2003) 20-Hydroxyeicosatetraenoic acid (20-HETE) activates mouse TRPC6 channels expressed in HEK293 cells. J Biol Chem 278:31709–31716PubMedCrossRefGoogle Scholar
  4. Benham CD, Davis JB, Randall AD (2002) Vanilloid and TRP channels: a family of lipid-gated cation channels. Neuropharmacology 42:873–888PubMedCrossRefGoogle Scholar
  5. Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325PubMedCrossRefGoogle Scholar
  6. Berridge MJ (1995) Capacitative calcium entry. Biochem J 312:1–11PubMedGoogle Scholar
  7. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21PubMedCrossRefGoogle Scholar
  8. Bezzerides VJ, Ramsey IS, Kotecha S, Greka A, Clapham DE (2004) Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol 6:709–720PubMedCrossRefGoogle Scholar
  9. Birnbaumer L, Zhu X, Jiang M, Boulay G, Peyton M, Vannier B, Brown D, Platano D, Sadeghi H, Stefani E, Birnbaumer M (1996) On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins. Proc Natl Acad Sci USA 93:15195–15202PubMedCrossRefGoogle Scholar
  10. Boulay G, Zhu X, Peyton M, Jiang M, Hurst R, Stefani E, Birnbaumer L (1997) Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein. J Biol Chem 272:29672–29680PubMedCrossRefGoogle Scholar
  11. Braun FJ, Broad LM, Armstrong DL, Putney JW Jr (2001) Stable activation of single CRAC-channels in divalent cation-free solutions. J Biol Chem 276:1063–1070PubMedCrossRefGoogle Scholar
  12. Broad LM, Cannon TR, Taylor CW (1999) A non-capacitative pathway activated by arachidonic acid is the major Ca2+ entry mechanism in rat A7r5 smooth muscle cells stimulated with low concentrations of vasopressin. J Physiol (Lond) 517:121–134PubMedCrossRefGoogle Scholar
  13. Brough GH, Wu S, Cioffi D, Moore TM, Li M, Dean N, Stevens T (2001) Contribution of endogenously expressed Trp1 to a Ca2+-selective, store-operated Ca2+ entry pathway. FASEB J 15:1727–1738PubMedCrossRefGoogle Scholar
  14. Cayouette S, Lussier MP, Mathieu EL, Bousquet SM, Boulay G (2004) Exocytotic insertion of TRPC6 channel into the plasma membrane upon Gq protein-coupled receptor activation. J Biol Chem 279:7241–7246PubMedCrossRefGoogle Scholar
  15. Chakrabarti R, Kumar S (2000) Diacylglycerol mediates the T-cell receptor-driven Ca2+ influx in T cells by a novel mechanism independent of protein kinase C activation. J Cell Biochem 78:222–230PubMedCrossRefGoogle Scholar
  16. Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957–962PubMedCrossRefGoogle Scholar
  17. Clapham DE (1995) Calcium signaling. Cell 80:259–268PubMedCrossRefGoogle Scholar
  18. Clapham DE, Runnels LW, Strübing C (2002) The TRP ion channel family. Nat Rev Neurosci 2:387–396CrossRefGoogle Scholar
  19. Dietrich A, Mederos YS, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H, Essin K, Pinkenburg O, Luft FC, Gudermann T, Birnbaumer L (2005) Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol Cell Biol 25:6980–6989PubMedCrossRefGoogle Scholar
  20. Dohke Y, Oh YS, Ambudkar IS, Turner RJ (2004) Biogenesis and topology of the transient receptor potential Ca2+ channel TRPC1. J Biol Chem 279:12242–12248PubMedCrossRefGoogle Scholar
  21. Estacion M, Li S, Sinkins WG, Gosling M, Bahra P, Poll C, Westwick J, Schilling WP (2004) Activation of human TRPC6 channels by receptor stimulation. J Biol Chem 279:22047–22056PubMedCrossRefGoogle Scholar
  22. Fadool DA, Ache BW (1992) Plasma membrane inositol 1,4,5-trisphosphate-activated channels mediate signal transduction in lobster olfactory receptor neurons. Neuron 9:907–918PubMedCrossRefGoogle Scholar
  23. Fleig A, Penner R (2004) The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci 25:633–639PubMedCrossRefGoogle Scholar
  24. Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weißgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B (2001) Lack of an endothelial storeoperated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. Nat Cell Biol 3:121–127PubMedCrossRefGoogle Scholar
  25. Gailly P, Colson-Van Schoor M (2001) Involvement of trp-2 protein in store-operated influx of calcium in fibroblasts. Cell Calcium 30:157–165PubMedCrossRefGoogle Scholar
  26. Gamberucci A, Giurisato E, Pizzo P, Tassi M, Giunti R, McIntosh DP, Benedetti A (2002) Diacylglycerol activates the influx of extracellular cations in T-lymphocytes independently of intracellular calcium-store depletion and possibly involving endogenous TRP6 gene products. Biochem J 364:245–254PubMedGoogle Scholar
  27. Greka A, Navarro B, Oancea E, Duggan A, Clapham DE (2003) TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 6:837–845PubMedCrossRefGoogle Scholar
  28. Gunthorpe MJ, Benham CD, Randall A, Davis JB (2002) The diversity in the vanilloid (TRPV) receptor family of ion channels. Trends Pharmacol Sci 23:183–191PubMedCrossRefGoogle Scholar
  29. Guse AH, da Silva CP, Berg I, Skapenko AL, Weber K, Heyer P, Hohenegger M, Ashamu GA, Schulze-Koops H, Potter BVL, Mayr GW (1999) Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 398:70–73PubMedCrossRefGoogle Scholar
  30. Halaszovich CR, Zitt C, Jüngling E, Lückhoff A (2000) Inhibition of TRP3 by lanthanides. Block from the cytosolic side of the plasma membrane. J Biol Chem 275:37423–37428PubMedCrossRefGoogle Scholar
  31. Hardie RC, Minke B (1993) Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Trends Neurosci 16:371–376PubMedCrossRefGoogle Scholar
  32. Harteneck C, Plant TD, Schultz G (2000) From worm to man: three subfamilies of TRP channels. Trends Neurosci 23:159–166PubMedCrossRefGoogle Scholar
  33. Hoenderop JG, Nilius B, Bindels RJ (2003) Epithelial calcium channels: from identification to function and regulation. Pflugers Arch 446:304–308PubMedGoogle Scholar
  34. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–262PubMedCrossRefGoogle Scholar
  35. Hofmann T, Schaefer M, Schultz G, Gudermann T (2000) Cloning, expression and subcellular localization of two splice variants of mouse transient receptor potential channel 2. Biochem J 351:115–122PubMedCrossRefGoogle Scholar
  36. Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci USA 99:7461–7466PubMedCrossRefGoogle Scholar
  37. Hsu AL, Ching TT, Sem G, Wang DS, Bondada S, Authi KS, Chen CS (2000) Novel function of phosphoinositide 3-kinase in T cell signaling. A phosphatidylinositol 3,4,5-trisphosphate-mediated Ca2+ entry mechanism. J Biol Chem 275:16242–16250PubMedCrossRefGoogle Scholar
  38. Hurst RS, Zhu X, Boulay G, Birnbaumer L, Stefani E (1998) Ionic currents underlying HTRP3 mediated agonist-dependent Ca2+ influx in stably transfected HEK293 cells. FEBS Lett 422:333–338PubMedCrossRefGoogle Scholar
  39. Inoue R, Okada T, Onoue H, Hara Y, Shimizu S, Naitoh S, Ito Y, Mori Y (2001) The transient receptor potential protein homologue TRP6 is the essential component of vascular α1-adrenoceptor-activated Ca2+-permeable cation channel. Circ Res 88:325–332PubMedGoogle Scholar
  40. Jung S, Mühle A, Schaefer M, Strotmann R, Schultz G, Plant TD (2003) Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore mouth. J Biol Chem 278:3562–3571PubMedCrossRefGoogle Scholar
  41. Jungnickel MK, Marreo H, Birnbaumer L, Lémos JR, Florman HM (2001) Trp2 regulates entry of Ca2+ into mouse sperm triggered by egg ZP3. Nat Cell Biol 3:499–502PubMedCrossRefGoogle Scholar
  42. Kamouchi M, Philipp S, Flockerzi V, Wissenbach U, Mamin A, Raeymaekers L, Eggermont J, Droogmans G, Nilius B (1999) Properties of heterologously expressed hTRP3 channels in bovine pulmonary artery endothelial cells. J Physiol (Lond) 518:345–358PubMedCrossRefGoogle Scholar
  43. Kanki H, Kinoshita M, Akaike A, Satoh M, Mori Y, Kaneko S (2001) Activation of inositol 1,4,5-trisphosphate receptor is essential for the opening of mouse TRP5 channel. Mol Pharmacol 60:989–998PubMedGoogle Scholar
  44. Kim JY, Saffen D (2005) Activation of M1 muscarinic acetylcholine receptors stimulates the formation of a multiprotein complex centered on TRPC6 channels. J Biol Chem 280:32035–32047PubMedCrossRefGoogle Scholar
  45. Kiselyov K, Xu X, Mozhayeva G, Kuo T, Pessah I, Mignery G, Zhu X, Birnbaumer L, Muallem S (1998) Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396:478–482PubMedCrossRefGoogle Scholar
  46. Kwan HY, Huang Y, Yao X (2004) Regulation of canonical transient receptor potential isoform 3 (TRPC3) channel by protein kinase G. Proc Natl Acad Sci U S A 101:2625–2630PubMedCrossRefGoogle Scholar
  47. Kwan HY, Huang Y, Yao X (2005) Protein kinase C can inhibit TRPC3 channels indirectly via stimulating protein kinase G. J Cell Physiol 207:315–321CrossRefGoogle Scholar
  48. Lievremont JP, Bird GS, Putney JW Jr (2004) Canonical transient receptor potential TRPC7 can function as both a receptor-and store-operated channel in HEK-293 cells. Am J Physiol Cell Physiol 287:C1709–C1716PubMedCrossRefGoogle Scholar
  49. Lievremont JP, Bird GS, Putney JW Jr (2005a) Mechanism of inhibition of TRPC cation channels by 2-aminoethoxydiphenylborane. Mol Pharmacol 68:758–762PubMedGoogle Scholar
  50. Lievremont JP, Numaga T, Vazquez G, Lemonnier L, Hara Y, Mori E, Trebak M, Moss SE, Bird GS, Mori Y, Putney JW Jr (2005b) The role of canonical transient receptor potential 7 in B-cell receptor-activated channels. J Biol Chem 280:35346–35351PubMedCrossRefGoogle Scholar
  51. Liman ER, Innan H (2003) Relaxed selective pressure on an essential component of pheromone transduction in primate evolution. Proc Natl Acad Sci U S A 100:3328–3332PubMedCrossRefGoogle Scholar
  52. Liman ER, Corey DP, Dulac C (1999) TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci USA 96:5791–5796PubMedCrossRefGoogle Scholar
  53. Lintschinger B, Balzer-Geldsetzer M, Baskaran T, Graier WF, Romanin C, Zhu MX, Groschner K (2000) Coassembly of Trp1 and Trp3 proteins generates diacylglycerol-and Ca2+-sensitive cation channels. J Biol Chem 275:27799–27805PubMedGoogle Scholar
  54. Liu X, Wang W, Singh BB, Lockwich T, Jadlowiec J, O’Connell B, Wellner R, Zhu MX, Ambudkar IS (2000) Trp1, a candidate protein for the store-operated Ca2+ influx mechanism in salivary gland cells. J Biol Chem 275:3403–3411PubMedCrossRefGoogle Scholar
  55. Liu X, Singh BB, Ambudkar IS (2003) TRPC1 is required for functional store-operated Ca2+ channels. Role of acidic amino acid residues in the S5–S6 region. J Biol Chem 278:11337–11343PubMedCrossRefGoogle Scholar
  56. Liu X, Bandyopadhyay BC, Singh BB, Groschner K, Ambudkar IS (2005) Molecular analysis of a store-operated and 2-Acetyl-sn-glycerol-sensitive non-selective cation channel: heteromeric assembly of TRPC1-TRPC3. J Biol Chem 280:21600–21606PubMedCrossRefGoogle Scholar
  57. Lucas P, Ukhanov K, Leinders-Zufall T, Zufall F (2003) A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 40:551–561PubMedCrossRefGoogle Scholar
  58. Ma HT, Patterson RL, van Rossum DB, Birnbaumer L, Mikoshiba K, Gill DL (2000) Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science 287:1647–1651PubMedCrossRefGoogle Scholar
  59. Ma HT, Venkatachalam K, Parys JB, Gill DL (2002) Modification of store-operated channel coupling and inositol trisphosphate receptor function by 2-aminoethoxydiphenyl borate in DT40 lymphocytes. J Biol Chem 277:6915–6922PubMedCrossRefGoogle Scholar
  60. Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179–185PubMedCrossRefGoogle Scholar
  61. McKay RR, Szymeczek-Seay CL, Lièvremont JP, Bird GS, Zitt C, Jüngling E, Lückhoff A, Putney JW Jr (2000) Cloning and expression of the human transient receptor potential 4 (TRP4) gene: localization and functional expression of human TRP4 and TRP3. Biochem J 351:735–746PubMedCrossRefGoogle Scholar
  62. Mehta D, Ahmmed GU, Paria B, Holinstat M, Voyno-Yasenetskaya T, Tiruppathi C, Minshall RD, Malik AB (2003) Rho A interaction with inositol 1,4,5-triphosphate receptor and transient receptor potential channel-1 regulates Ca2+ entry. Role in signaling increased endothelial permeability. J Biol Chem 278:33492–33500PubMedCrossRefGoogle Scholar
  63. Minke B, Cook B (2002) TRP channel proteins and signal transduction. Physiol Rev 82:429–472PubMedGoogle Scholar
  64. Montell C (1999) Visual transduction in Drosophila. Annu Rev Cell Dev Biol 15:231–268PubMedCrossRefGoogle Scholar
  65. Montell C, Birnbaumer L, Flockerzi V (2002) The TRP channels, a remarkably functional family. Cell 108:595–598PubMedCrossRefGoogle Scholar
  66. Mori Y, Wakamori M, Miyakawa T, Hermosura M, Hara Y, Nishida M, Hirose K, Mizushima A, Kurosaki M, Mori E, Gotoh K, Okada T, Fleig A, Penner R, Iino M, Kurosaki T (2002) Transient receptor potential 1 regulates capacitative Ca2+ entry and Ca2+ release from endoplasmic reticulum in B lymphocytes. J Exp Med 195:673–681PubMedCrossRefGoogle Scholar
  67. Nilius B, Vriens J, Prenen J, Droogmans G, Voets T (2004) TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol Cell Physiol 286:C195–C205PubMedCrossRefGoogle Scholar
  68. Nilius B, Voets T, Peters J (2005) TRP channels in disease. Sci STKE 2005:re8Google Scholar
  69. Obukhov AG, Nowycky MC (2002) TRPC4 can be activated by G-protein-coupled receptors and provides sufficient Ca2+ to trigger exocytosis in neuroendocrine cells. J Biol Chem 277:16172–16178PubMedCrossRefGoogle Scholar
  70. Odell AF, Scott JL, Van Helden DF (2005) Epidermal growth factor induces tyrosine phos-phorylation, membrane insertion, and activation of transient receptor potential channel 4. J Biol Chem 280:37974–37987PubMedCrossRefGoogle Scholar
  71. Okada T, Shimizu S, Wakamori M, Maeda A, Kurosaki T, Takada N, Imoto K, Mori Y (1998) Molecular cloning and functional characterization of a novel receptor-activated TRP Ca2+ channel from mouse brain. J Biol Chem 273:10279–10287PubMedCrossRefGoogle Scholar
  72. Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T, Yamakuni T, Tanaka I, Shimizu S, Ikenaka K, Imoto K, Mori Y (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca2+-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem 274:27359–27370PubMedCrossRefGoogle Scholar
  73. Okada Y, Teeter JH, Restrepo D (1994) Inositol 1,4,5-trisphosphate-gated conductance in isolated rat olfactory neurons. J Neurophysiol 71:595–602PubMedGoogle Scholar
  74. Ordaz B, Tang J, Xiao R, Salgado A, Sampieri A, Zhu MX, Vaca L (2005) Calmodulin and calcium interplay in the modulation of TRPC5 channel activity: identification of a novel C-terminal domain for calcium/calmodulin-mediated facilitation. J Biol Chem 280:30788–30796PubMedCrossRefGoogle Scholar
  75. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810PubMedCrossRefGoogle Scholar
  76. Paria BC, Vogel SM, Ahmmed GU, Alamgir S, Shroff J, Malik AB, Tiruppathi C (2004) Tumor necrosis factor-alpha-induced TRPC1 expression amplifies store-operated Ca2+ influx and endothelial permeability. Am J Physiol Lung Cell Mol Physiol 287:L1303–L1313PubMedCrossRefGoogle Scholar
  77. Perraud AL, Knowles HM, Schmitz C (2004) Novel aspects of signaling and ion-homeostasis regulation in immunocytes. The TRPM ion channels and their potential role in modulating the immune response. Mol Immunol 41:657–673PubMedCrossRefGoogle Scholar
  78. Philipp S, Cavalié A, Freichel M, Wissenbach U, Zimmer S, Trost C, Marguart A, Murakami M, Flockerzi V (1996) A mammalian capacitative calcium entry channel homologous to Drosophila TRP and TRPL. EMBO J 15:6166–6171PubMedGoogle Scholar
  79. Philipp S, Hambrecht J, Braslavski L, Schroth G, Freichel M, Murakami M, Cavalié A, Flockerzi V (1998) A novel capacitative calcium entry channel expressed in excitable cells. EMBO J 17:4274–4282PubMedCrossRefGoogle Scholar
  80. Philipp S, Trost C, Warnat J, Rautmann J, Himmerkus N, Schroth G, Kretz O, Nastainczyk W, Cavalié A, Hoth M, Flockerzi V (2000) Trp4 (CCE1) protein is part of native calcium release-activated Ca2+-like channels in adrenal cells. J Biol Chem 275:23965–23972PubMedCrossRefGoogle Scholar
  81. Podesta M, Zocchi E, Pitto A, Usai C, Franco L, Bruzzone S, Guida L, Bacigalupo A, Scadden DT, Walseth TF, De Flora A, Daga A (2000) Extracellular cyclic ADP-ribose increases intracellular free calcium concentration and stimulates proliferation of human hemopoietic progenitors. FASEB J 14:680–690PubMedGoogle Scholar
  82. Preuß KD, Nöller JK, Krause E, Göbel A, Schulz I (1997) Expression and characterization of a trpl homolog from rat. Biochem Biophys Res Commun 240:167–172PubMedCrossRefGoogle Scholar
  83. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12PubMedCrossRefGoogle Scholar
  84. Putney JW Jr (1997) Capacitative calcium entry. Landes Biomedical Publishing, AustinGoogle Scholar
  85. Putney JW Jr (2004) The enigmatic TRPCs: multifunctional cation channels. Trends Cell Biol 14:282–286PubMedCrossRefGoogle Scholar
  86. Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, vila-Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37:739–744PubMedCrossRefGoogle Scholar
  87. Riccio A, Mattei C, Kelsell RE, Medhurst AD, Calver AR, Randall AD, Davis JB, Benham CD, Pangalos MN (2002a) Cloning and functional expression of human short TRP7, a candidate protein for store-operated Ca2+ influx. J Biol Chem 277:12302–12309PubMedCrossRefGoogle Scholar
  88. Riccio A, Medhurst AD, Mattei C, Kelsell RE, Calver AR, Randall AD, Benham CD, Pangalos MN (2002b) mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Mol Brain Res 109:95–104PubMedCrossRefGoogle Scholar
  89. Rosado JA, Brownlow SL, Sage SO (2002) Endogenously expressed Trp1 is involved in store-mediated Ca2+ entry by conformational coupling in human platelets. J Biol Chem 277:42157–42163PubMedCrossRefGoogle Scholar
  90. Sadighi Akha AA, Willmott NJ, Brickley K, Dolphin AC, Galione A, Hunt SV (1996) Anti-Ig-induced c alcium influx in rat B lymphocytes mediated by cGMP through a dihydropyridine-sensitive channel. J Biol Chem 271:7297–7300PubMedCrossRefGoogle Scholar
  91. Schaefer M, Plant TD, Obukhov AG, Hofmann T, Gudermann T, Schultz G (2000) Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem 275:17517–17526PubMedCrossRefGoogle Scholar
  92. Schaefer M, Plant TD, Stresow N, Albrecht N, Schultz G (2002) Functional differences between TRPC4 splice variants. J Biol Chem 277:3752–3759PubMedCrossRefGoogle Scholar
  93. Shi J, Mori E, Mori Y, Mori M, Li J, Ito Y, Inoue R (2004) Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells. J Physiol 561:415–432PubMedCrossRefGoogle Scholar
  94. Shuttleworth TJ (1999) What drives calcium entry during [Ca2+]i oscillations? Challenging the capacitative model. Cell Calcium 25:237–246PubMedCrossRefGoogle Scholar
  95. Shuttleworth TJ, Thompson JL, Mignen O (2004) ARC channels: a novel pathway for receptor-activated calcium entry. J Appl Physiol 19:355–361Google Scholar
  96. Singh BB, Lockwich TP, Bandyopadhyay BC, Liu X, Bollimuntha S, Brazer SC, Combs C, Das S, Leenders AG, Sheng ZH, Knepper MA, Ambudkar SV, Ambudkar IS (2004) VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to agonist-stimulated Ca(2+) influx. Mol Cell 15:635–646PubMedCrossRefGoogle Scholar
  97. Sinkins WG, Estacion M, Schilling WP (1998) Functional expression of TrpC1: a human homologue of the Drosophila Trp channel. Biochem J 331:331–339PubMedGoogle Scholar
  98. Soboloff J, Spassova M, Xu W, He LP, Cuesta N, Gill DL (2005) Role of endogenous TRPC6 channels in Ca2+ signal generation in A7r5 smooth muscle cells. J Biol Chem 280:39786–39794PubMedCrossRefGoogle Scholar
  99. Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278:39014–39019PubMedCrossRefGoogle Scholar
  100. Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29:645–655PubMedCrossRefGoogle Scholar
  101. Sweeney M, Yu Y, Platoshyn O, Zhang S, McDaniel SS, Yuan JXJ (2002) Inhibition of endogenous TRP1 decreases capacitative Ca2+ entry and attenuates pulmonary artery smooth muscle cell proliferation. Am J Physiol 283:L144–L155Google Scholar
  102. Tiruppathi C, Freichel M, Vogel SM, Paria BC, Mehta D, Flockerzi V, Malik AB (2002) Impairment of store-operated Ca2+ entry in TRPC4(-/-) mice interferes with increase in lung microvascular permeability. Circ Res 91:70–76PubMedCrossRefGoogle Scholar
  103. Tomita Y, Kaneko S, Funayama M, Kondo H, Satoh M, Akaike A (1998) Intracellular Ca2+ store-operated influx of Ca2+ through TRP-R, a rathomolog of TRP, expressed in Xenopus oocytes. Neurosci Lett 248:195–198PubMedCrossRefGoogle Scholar
  104. Trebak M, Bird GS, McKay RR, Putney JW Jr (2002) Comparison of human TRPC3 channels in receptor-activated and store-operated modes. Differential sensitivity to channel blockers suggests fundamental differences in channel composition. J Biol Chem 277:21617–21623PubMedCrossRefGoogle Scholar
  105. Trebak M, Bird GS, McKay RR, Birnbaumer L, Putney JW Jr (2003a) Signaling mechanism for receptor-activated TRPC3 channels. J Biol Chem 278:16244–16252PubMedCrossRefGoogle Scholar
  106. Trebak M, Vazquez G, Bird GS, Putney JW Jr (2003b) The TRPC3/6/7 subfamily of cation channels. Cell Calcium 33:451–461PubMedCrossRefGoogle Scholar
  107. Trebak M, Hempel N, Wedel BJ, Smyth JT, Bird GS, Putney JW Jr (2005) Negative regulation of TRPC3 channels by protein kinase C-mediated phosphorylation of serine 712. Mol Pharmacol 67:558–563PubMedCrossRefGoogle Scholar
  108. Tseng PH, Lin HP, Hu H, Wang C, Zhu MX, Chen CS (2004) The canonical transient receptor potential 6 channel as a putative phosphatidylinositol 3,4,5-trisphosphate-sensitive calcium entry system. Biochemistry 43:11701–11708PubMedCrossRefGoogle Scholar
  109. Vannier B, Zhu X, Brown D, Birnbaumer L (1998) The membrane topology of human transient receptor potential 3 as inferred from glycosylation-scanning mutagenesis and epitope immunocytochemistry. J Biol Chem 273:8675–8679PubMedCrossRefGoogle Scholar
  110. Vannier B, Peyton M, Boulay G, Brown D, Qin N, Jiang M, Zhu X, Birnbaumer L (1999) Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca2+ channel. Proc Natl Acad Sci U S A 96:2060–2064PubMedCrossRefGoogle Scholar
  111. Vazquez G, Lièvremont JP, Bird GS, Putney JW Jr (2001) Human Trp3 forms both inositol trisphosphate receptor-dependent and receptor-independent store-operated cation channels in DT40 avian B-lymphocytes. Proc Natl Acad Sci USA 98:11777–11782PubMedCrossRefGoogle Scholar
  112. Vazquez G, Wedel BJ, Bird GS, Joseph SK, Putney JW Jr (2002) An inositol 1,4,5-trisphosphate receptor-dependent cation entry pathway in DT40 B lymphocytes. EMBOJ 21:4531–4538CrossRefGoogle Scholar
  113. Vazquez G, Wedel BJ, Trebak M, Bird GS, Putney JW Jr (2003) Expression level of TRPC3 channel determines its mechanism of activation. J Biol Chem 278:21649–21654PubMedCrossRefGoogle Scholar
  114. Vazquez G, Wedel BJ, Aziz O, Trebak M, Putney JW Jr (2004) The mammalian TRPC cation channels. Biochim Biophys Acta 1742:21–36PubMedCrossRefGoogle Scholar
  115. Venkatachalam K, Ma HT, Ford DL, Gill DL (2001) Expression of functional receptor-coupled TRPC3 channels in DT40 triple receptor InsP3 knockout cells. J Biol Chem 276:33980–33985PubMedCrossRefGoogle Scholar
  116. Venkatachalam K, Zheng F, Gill DL (2003) Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem 278:29031–29040PubMedCrossRefGoogle Scholar
  117. Wang J, Shimoda LA, Sylvester JT (2004) Capacitative calcium entry and TRPC channel proteins are expressed in rat distal pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 286:L848–L858PubMedCrossRefGoogle Scholar
  118. Warnat J, Philipp S, Zimmer S, Flockerzi V, Cavalié A (1999) Phenotype of a recombinant store-operated channel: highly selective permeation of Ca2+. J Physiol (Lond) 518:631–638PubMedCrossRefGoogle Scholar
  119. Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci USA 92:9652–9656PubMedCrossRefGoogle Scholar
  120. Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308:1801–1804PubMedCrossRefGoogle Scholar
  121. Wu X, Babnigg G, Villereal ML (2000) Functional significance of human trp1 and trp3 in store-operated Ca2+ entry in HEK-293 cells. Am J Physiol 278:C526–C536Google Scholar
  122. Wu X, Babnigg G, Zagranichnaya T, Villereal ML (2002) The role of endogenous human Trp4 in regulating carbachol-induced calcium oscillations in HEK-293 cells. J Biol Chem 277:13597–13608PubMedCrossRefGoogle Scholar
  123. Xu SZ, Beech DJ (2001) TrpC1 is a membrane-spanning subunit of store-operated Ca(2+) channels in native vascular smooth muscle cells. Circ Res 88:84–87PubMedGoogle Scholar
  124. Xu SZ, Zeng F, Boulay G, Grimm C, Harteneck C, Beech DJ (2005) Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: a differential, extracellular and voltage-dependent effect. Br J Pharmacol 145:405–414PubMedCrossRefGoogle Scholar
  125. Xu XZ, Sternberg PW (2003) A C. elegans sperm TRP protein required for sperm-egg interactions during fertilization. Cell 114:285–297PubMedCrossRefGoogle Scholar
  126. Yamada H, Wakamori M, Hara Y, Takahashi Y, Konishi K, Imoto K, Mori Y (2000) Spontaneous single-channel activity of neuronal TRP5 channel recombinantly expressed in HEK293 cells. Neurosci Lett 285:111–114PubMedCrossRefGoogle Scholar
  127. Zeng F, Xu SZ, Jackson PK, McHugh D, Kumar B, Fountain SJ, Beech DJ (2004) Human TRPC5 channel activated by a multiplicity of signals in a single cell. J Physiol 559:739–750PubMedGoogle Scholar
  128. Zhang L, Saffen D (2001) Muscarinic acetylcholine receptor regulation of TRP6 Ca2+ channel isoforms. J Biol Chem 276:13331–13339PubMedCrossRefGoogle Scholar
  129. Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373:193–198PubMedCrossRefGoogle Scholar
  130. Zhu X, Jiang M, Peyton M, Boulay G, Hurst R, Stefani E, Birnbaumer L (1996) trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85:661–671PubMedCrossRefGoogle Scholar
  131. Zhu X, Jiang M, Birnbaumer L (1998) Receptor-activated Ca2+ influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells. Evidence for a non-capacitative calcium entry. J Biol Chem 273:133–142PubMedCrossRefGoogle Scholar
  132. Zitt C, Zobel A, Obukhov AG, Harteneck C, Kalkbrenner F, Lückhoff A, Schultz G (1996) Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron 16:1189–1196PubMedCrossRefGoogle Scholar
  133. Zitt C, Obukhov AG, Strübing C, Zobel A, Kalkbrenner F, Lückhoff A, Schultz G (1997) Expression of TRPC3 in Chinese hamster ovary cells results in calcium-activated cation currents not related to store depletion. J Cell Biol 138:1333–1341PubMedCrossRefGoogle Scholar
  134. Zitt C, Halaszovich CR, Lückhoff A (2002) The TRP family of cation channels: probing and advancing the concepts on receptor-activated calcium entry. Prog Neurobiol 66:243–264PubMedCrossRefGoogle Scholar
  135. Zweifach A, Lewis RS (1995a) Rapid inactivation of depletion-activated calcium current (ICRAC) due to local calcium feedback. J Gen Physiol 105:209–226PubMedCrossRefGoogle Scholar
  136. Zweifach A, Lewis RS (1995b) Slow calcium-dependent inactivation of depletion-activated calcium current. J Biol Chem 270:14445–14451PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • M. Trebak
    • 1
  • L. Lemonnier
    • 1
  • J. T. Smyth
    • 1
  • G. Vazquez
    • 1
  • J. W. PutneyJr.
    • 1
  1. 1.Laboratory of Signal Transduction, Department of Health and Human ServicesNational Institute of Environmental Health Sciences—NIHResearch Triangle ParkUSA

Personalised recommendations