The Mg2+ and Mg2+-Nucleotide-Regulated Channel-Kinase TRPM7

  • R. Penner
  • A. Fleig
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 179)


TRPM7 is a member of the melastatin-related subfamily of TRP channels and represents a protein that contains both an ion channel and a kinase domain. The protein is ubiquitously expressed and represents the only ion channel known that is essential for cellular viability. TRPM7 is a divalent cation-selective ion channel that is permeable to Ca2+ and Mg2+, but also conducts essential metals such as Zn2+, Mn2+, and Co2+, as well as nonphysiologic or toxic metals such as Ni2+, Cd2+, Ba2+, and Sr2+. The channel is constitutively open but strongly downregulated by intracellular levels of Mg2+ and MgATP and other Mg-nucleotides. Reducing the cellular levels of these regulators leads to activation of TRPM7-mediated currents that exhibit a characteristic nonlinear current-voltage relationship with pronounced outward rectification due to divalent influx at physiologically negative voltages and monovalent outward fluxes at positive voltages. TRPM7 channel activity is also actively regulated following receptor-mediated changes in cyclic AMP (cAMP) and protein kinase A activity. This regulation as well as that by Mg-nucleotides requires a functional endogenous kinase domain. The function of the kinase domain is not completely understood, but may involve autophosphorylation of TRPM7 as well as phosphorylation of other target proteins such as annexin and myosin IIA heavy chain. Based on these properties, TRPM7 is currently believed to represent a ubiquitous homeostatic mechanism that regulates Ca2+ and Mg2+ fluxes based on the metabolic state of the cell. Physiologically, the channel may serve as a regulated transport mechanism for these ions that could affect cell adhesion, cell growth and proliferation, and even cell death under pathological stress such as anoxia.


TRPM7 MagNuM Magnesium Mg-nucleotide Divalent cation channel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877PubMedCrossRefGoogle Scholar
  2. Clark K, Langeslag M, van Leeuwen B, Ran L, Ryazanov AG, Figdor CG, Moolenaar WH, Jalink K, van Leeuwen FN (2006) TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J 25:290–301PubMedCrossRefGoogle Scholar
  3. Demeuse P, Penner R, Fleig A (2006) TRPM7 channel is regulated by magnesium nucleotides via its kinase domain. J Gen Physiol 127:421–434PubMedCrossRefGoogle Scholar
  4. Elizondo MR, Arduini BL, Paulsen J, MacDonald EL, Sabel JL, Henion PD, Cornell RA, Parichy DM (2005) Defective skeletogenesis with kidney stone formation in dwarf zebrafish mutant for trpm7. Curr Biol 15:667–671PubMedCrossRefGoogle Scholar
  5. Estevez AY, Strange K (2005) Calcium feedback mechanisms regulate oscillatory activity of a TRP-like Ca2+ conductance in C. elegans intestinal cells. J Physiol 567:239–251PubMedCrossRefGoogle Scholar
  6. Estevez AY, Roberts RK, Strange K (2003) Identification of store-independent and store-operated Ca2+ conductances in Caenorhabditis elegans intestinal epithelial cells. J Gen Physiol 122:207–223PubMedCrossRefGoogle Scholar
  7. Fomina AF, Fanger CM, Kozak JA, Cahalan MD (2000) Single channel properties and regulated expression of Ca2+ release-activated Ca2+ (CRAC) channels in human T cells. J Cell Biol 150:1435–1444PubMedCrossRefGoogle Scholar
  8. Hanano T, Hara Y, Shi J, Morita H, Umebayashi C, Mori E, Sumimoto H, Ito Y, Mori Y, Inoue R (2004) Involvement of TRPM7 in cell growth as a spontaneously activated Ca2+ entry pathway in human retinoblastoma cells. J Pharmacol Sci 95:403–419PubMedCrossRefGoogle Scholar
  9. Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9:163–173PubMedCrossRefGoogle Scholar
  10. Hermosura MC, Monteilh-Zoller MK, Scharenberg AM, Penner R, Fleig A (2002) Dissociation of the store-operated calcium current ICRAC and the Mg-nucleotide-regulated metal ion current MagNuM. J Physiol 539:445–458PubMedCrossRefGoogle Scholar
  11. Hermosura MC, Nayakanti H, Dorovkov MV, Calderon FR, Ryazanov AG, Haymer DS, Garruto RM (2005) A TRPM7 variant shows altered sensitivity to magnesium that may contribute to the pathogenesis of two Guamanian neurodegenerative disorders. Proc Natl Acad Sci U S A 102:11510–11515PubMedCrossRefGoogle Scholar
  12. Jiang J, Li M, Yue L (2005) Potentiation of TRPM7 inward currents by protons. J Gen Physiol 126:137–150PubMedCrossRefGoogle Scholar
  13. Kerschbaum HH, Cahalan MD (1998) Monovalent permeability, rectification, and ionic block of store-operated calcium channels in Jurkat T lymphocytes. J Gen Physiol 111:521–537PubMedCrossRefGoogle Scholar
  14. Kerschbaum HH, Cahalan MD (1999) Single-channel recording of a store-operated Ca2+ channel in Jurkat T lymphocytes. Science 283:836–839PubMedCrossRefGoogle Scholar
  15. Kerschbaum HH, Kozak JA, Cahalan MD (2003) Polyvalent cations as permeant probes of MIC and TRPM7 pores. Biophys J 84:2293–2305PubMedGoogle Scholar
  16. Kozak JA, Cahalan MD (2003) MIC channels are inhibited by internal divalent cations but not ATP. Biophys J 84:922–927PubMedCrossRefGoogle Scholar
  17. Kozak JA, Kerschbaum HH, Cahalan MD (2002) Distinct properties of CRAC and MIC channels in RBL cells. J Gen Physiol 120:221–235PubMedGoogle Scholar
  18. Kozak JA, Matsushita M, Nairn AC, Cahalan MD (2005) Charge screening by internal pH and polyvalent cations as a mechanism for activation, inhibition, and rundown of TRPM7/MIC channels. J Gen Physiol 126:499–514PubMedCrossRefGoogle Scholar
  19. Lee JM, Grabb MC, Zipfel GJ, Choi DW (2000) Brain tissue responses to ischemia. J Clin Invest 106:723–731PubMedCrossRefGoogle Scholar
  20. Liu B, Qin F (2005) Functional control of cold-and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J Neurosci 25:1674–1681PubMedCrossRefGoogle Scholar
  21. Liu D, Liman ER (2003) Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci U S A 100:15160–15165PubMedCrossRefGoogle Scholar
  22. Matsushita M, Kozak JA, Shimizu Y, McLachlin DT, Yamaguchi H, Wei FY, Tomizawa K, Matsui H, Chait BT, Cahalan MD, Nairn AC (2005) Channel function is dissociated from the intrinsic kinase activity and autophosphorylation of TRPM7/ChaK1. J Biol Chem 280:20793–20803PubMedCrossRefGoogle Scholar
  23. Maynard CJ, Bush AI, Masters CL, Cappai R, Li QX (2005) Metals and amyloid-beta in Alzheimer’s disease. Int J Exp Pathol 86:147–159PubMedCrossRefGoogle Scholar
  24. Milligan G, Kostenis E (2006) Heterotrimeric G-proteins: a short history. Br J Pharmacol 147Suppl 1:S46–55PubMedCrossRefGoogle Scholar
  25. Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 121:49–60PubMedCrossRefGoogle Scholar
  26. Mubagwa K, Stengl M, Flameng W (1997) Extracellular divalent cations block a cation non-selective conductance unrelated to calcium channels in rat cardiac muscle. J Physiol 502:235–247PubMedCrossRefGoogle Scholar
  27. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A (2001) LTRPC7 is a MgATP-regulated divalent cation channel required for cell viability. Nature 411:590–595PubMedCrossRefGoogle Scholar
  28. Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T (2006) TheCa(2+)-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J 25:467–478PubMedCrossRefGoogle Scholar
  29. Oancea E, Wolfe JT, Clapham DE (2006) Functional TRPM7 channels accumulate at the plasma membrane in response to fluid flow. Circ Res 98:245–253PubMedCrossRefGoogle Scholar
  30. Prakriya M, Lewis RS (2002) Separation and characterization of currents through store-operated CRAC channels and Mg2+-inhibited cation (MIC) channels. J Gen Physiol 119:487–507PubMedCrossRefGoogle Scholar
  31. Rohacs T, Lopes CM, Michailidis I, Logothetis DE (2005) PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8:626–634PubMedCrossRefGoogle Scholar
  32. Runnels LW, Yue L, Clapham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291:1043–1047PubMedCrossRefGoogle Scholar
  33. Runnels LW, Yue L, Clapham DE (2002) The TRPM7 channel is inactivated by PIP2 hydrolysis. Nat Cell Biol 4:329–336PubMedGoogle Scholar
  34. Ryazanova LV, Pavur KS, Petrov AN, Dorovkov MV, Ryazanov AG (2001) Novel type of signaling molecules: protein kinases covalently linked with ion channels. Mol Biol 35:271–283CrossRefGoogle Scholar
  35. Ryazanova LV, Dorovkov MV, Ansari A, Ryazanov AG (2004) Characterization of the protein kinase activity of TRPM7/ChaK1, a protein kinase fused to the transient receptor potential ion channel. J Biol Chem 279:3708–3716PubMedCrossRefGoogle Scholar
  36. Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM (2003) Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114:191–200PubMedCrossRefGoogle Scholar
  37. Su LT, Agapito MA, Li M, W TN S, Huttenlocher A, Habas R, Yue L, Runnels LW (2006) Trpm7 regulates cell adhesion by controlling the calcium dependent protease calpain. J Biol Chem 281:11260–11270PubMedCrossRefGoogle Scholar
  38. Takezawa R, Schmitz C, Demeuse P, Scharenberg AM, Penner R, Fleig A (2004) Receptor-mediated regulation of the TRPM7 channel through its endogenous protein kinase domain. Proc Natl Acad Sci U S A 101:6009–6014PubMedCrossRefGoogle Scholar
  39. Teramoto T, Lambie EJ, Iwasaki K (2005) Differential regulation of TRPM channels governs electrolyte homeostasis in the C. elegans intestine. Cell Metab 1:343–354PubMedCrossRefGoogle Scholar
  40. Xiao RP (2000) Cell logic for dual coupling of a single class of receptors to G(s) and G(i) proteins. Circ Res 87:635–637PubMedGoogle Scholar
  41. Xiong Z, Lu W, MacDonald JF (1997) Extracellular calcium sensed by a novel cation channel in hippocampal neurons. Proc Natl Acad Sci U S A 94:7012–7017PubMedCrossRefGoogle Scholar
  42. Yamaguchi H, Matsushita M, Nairn AC, Kuriyan J (2001) Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol Cell 7:1047–1057PubMedCrossRefGoogle Scholar
  43. Zakharov SI, Mongayt DA, Cohen RA, Bolotina VM (1999) Monovalent cation and L-type Ca2+ channels participate in calcium paradox-like phenomenon in rabbit aortic smooth muscle cells. J Physiol 514:71–81PubMedCrossRefGoogle Scholar
  44. Zhang Z, Okawa H, Wang Y, Liman ER (2005) Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. J Biol Chem 280:39185–39192PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • R. Penner
    • 1
  • A. Fleig
    • 1
  1. 1.Laboratory of Cell and Molecular Signaling, Center for Biomedical ResearchThe Queen’s Medical CenterHonoluluUSA

Personalised recommendations