Advertisement

TRPM3

  • J. Oberwinkler
  • S. E. Philipp
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 179)

Abstract

TRPM3 is the last identified member of the TRPM subfamily and is most closely related to TRPM1. Due to alternative splicing, the TRPM3 gene encodes a large number of different variants. One splice event, affecting the pore-forming region of the channel, changes its selectivity for divalent cations. Inthis review, we give an overview of the identified TRPM3 variants and compare their functional properties.

Keywords

TRPM3 variants Alternative splicing Channel pore 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  2. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120:21–24PubMedCrossRefGoogle Scholar
  3. Bollimuntha S, Singh BB, Shavali S, Sharma SK, Ebadi M (2005) TRPC1-mediated inhibition of 1-methyl-4-phenylpyridinium ion neurotoxicity in human SH-SY5Y neuroblastoma cells. J Biol Chem 280:2132–2140PubMedCrossRefGoogle Scholar
  4. Bootman MD, Collins TJ, MacKenzie L, Roderick HL, Berridge MJ, Peppiatt CM (2002) 2-Aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. FASEB J 16:1145–1150PubMedCrossRefGoogle Scholar
  5. Chen PY, Manninga H, Slanchev K, Chien M, Russo JJ, Ju J, Sheridan R, John B, Marks DS, Gaidatzis D, Sander C, Zavolan M, Tuschl T (2005) The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev 19:1288–1293PubMedCrossRefGoogle Scholar
  6. Fantozzi I, Zhang S, Platoshyn O, Remillard CV, Cowling RT, Yuan JX (2003) Hypoxia increases AP-1 binding activity by enhancing capacitative Ca2+ entry in human pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 285:L1233–L1245PubMedGoogle Scholar
  7. Franzius D, Hoth M, Penner R (1994) Non-specific effects of calcium entry antagonists in mast cells. Pflugers Arch 428:433–438PubMedCrossRefGoogle Scholar
  8. Griffiths-Jones S (2004) The microRNA Registry. Nucleic Acids Res 32:D109–D111PubMedCrossRefGoogle Scholar
  9. Grimm C, Kraft R, Sauerbruch S, Schultz G, Harteneck C (2003) Molecular and functional characterization of the melastatin-related cation channel TRPM3. J Biol Chem 278:21493–21501PubMedCrossRefGoogle Scholar
  10. Grimm C, Kraft R, Schultz G, Harteneck C (2005) Activation of the melastatin-related cation channel TRPM3 by D-erythro-sphingosine. Mol Pharmacol 67:798–805PubMedCrossRefGoogle Scholar
  11. Kozak JA, Cahalan MD (2003) MIC channels are inhibited by internal divalent cations but not ATP. Biophys J 84:922–927PubMedCrossRefGoogle Scholar
  12. Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T (2003) New microRNAs from mouse and human. RNA 9:175–179PubMedCrossRefGoogle Scholar
  13. Lee N, Chen J, Wu S, Sun L, Huang M, Levesque PC, Rich A, Feder JN, Gray KR, Lin JH, Janovitz EB, Blanar MA (2003) Expression and characterization of human transient receptor potential melastatin 3 (hTRPM3). J Biol Chem 278:20890–20897PubMedCrossRefGoogle Scholar
  14. Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S (2000) Vanilloid receptor-related osmotically activated channel (VROAC), a candidate vertebrate osmoreceptor. Cell 103:525–535PubMedCrossRefGoogle Scholar
  15. Lis A, Wissenbach U, Philipp SE (2005) Transcriptional regulation and processing increase the functional variability of TRPM channels. Naunyn Schmiedebergs Arch Pharmacol 371:315–324PubMedCrossRefGoogle Scholar
  16. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A (2001) LTRPC7 is a MgATP-regulated divalent cation channel required for cell viability. Nature 411:590–595PubMedCrossRefGoogle Scholar
  17. Nealen ML, Gold MS, Thut PD, Caterina MJ (2003) TRPM8 mRNA is expressed in a subset of cold-responsive trigeminal neurons from rat. J Neurophysiol 90:515–520PubMedCrossRefGoogle Scholar
  18. Nilius B, Prenen J, Janssens A, Owsianik G, Wang C, Zhu MX, Voets T (2005) The selectivity filter of the cation channel TRPM4. J Biol Chem 280:22899–22906PubMedCrossRefGoogle Scholar
  19. Numaguchi H, Johnson JP Jr, Petersen CI, Balser JR (2000) A sensitive mechanism for cation modulation of potassium current. Nat Neurosci 3:429–430PubMedCrossRefGoogle Scholar
  20. Oberwinkler J, Lis A, Giehl KM, Flockerzi V, Philipp SE (2005) Alternative splicing switches the divalent cation selectivity of TRPM3 channels. J Biol Chem 280:22540–22548PubMedCrossRefGoogle Scholar
  21. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910PubMedCrossRefGoogle Scholar
  22. Schulz HL, Rahman FA, Fadl El Moula FM, Stojic J, Gehrig A, Weber BH (2004) Identifying differentially expressed genes in the mammalian retina and the retinal pigment epithelium by suppression subtractive hybridization. Cytogenet Genome Res 106:74–81PubMedCrossRefGoogle Scholar
  23. Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702PubMedCrossRefGoogle Scholar
  24. Voets T, Nilius B (2003) The pore of TRP channels: trivial or neglected? Cell Calcium 33:299–302PubMedCrossRefGoogle Scholar
  25. Voets T, Nilius B, Hoefs S, van der Kemp AW, Droogmans G, Bindels RJ, Hoenderop JG (2004) TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279:19–25PubMedCrossRefGoogle Scholar
  26. Weber MJ (2005) New human and mouse microRNA genes found by homology search. FEBS J 272:59–73PubMedCrossRefGoogle Scholar
  27. Wischmeyer E, Lentes KU, Karschin A (1995) Physiological and molecular characterization of an IRK-type inward rectifier K+ channel in a tumour mast cell line. Pflugers Arch 429:809–819PubMedCrossRefGoogle Scholar
  28. Wistow G, Bernstein SL, Ray S, Wyatt MK, Behal A, Touchman JW, Bouffard G, Smith D, Peterson K (2002a) Expressed sequence tag analysis of adult human iris for the NEIBank Project: steroid-response factors and similarities with retinal pigment epithelium. Mol Vis 8:185–195PubMedGoogle Scholar
  29. Wistow G, Bernstein SL, Wyatt MK, Behal A, Touchman JW, Bouffard G, Smith D, Peterson K (2002b) Expressed sequence tag analysis of adult human lens for the NEIBank Project: over 2000 non-redundant transcripts, novel genes and splice variants. Mol Vis 8:171–184PubMedGoogle Scholar
  30. Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, Ge P, Lilly J, Silos-Santiago I, Xie Y, DiStefano PS, Curtis R, Clapham DE (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418:181–186PubMedCrossRefGoogle Scholar
  31. Xu SZ, Zeng F, Boulay G, Grimm C, Harteneck C, Beech DJ (2005) Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: a differential, extracellular and voltage-dependent effect. Br J Pharmacol 145:405–414PubMedCrossRefGoogle Scholar
  32. Yap KL, Kim J, Truong K, Sherman M, Yuan T, Ikura M (2000) Calmodulin target database. J Struct Funct Genomics 1:8–14PubMedCrossRefGoogle Scholar
  33. Zhang Z, Tang Y, Zhu MX (2001) Increased inwardly rectifying potassium currents in HEK-293 cells expressing murine transient receptor potential 4. Biochem J 354:717–725PubMedCrossRefGoogle Scholar
  34. Zhu X, Jiang M, Birnbaumer L (1998) Receptor-activated Ca2+ influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells. Evidence for a non-capacitative Ca2+ entry. J Biol Chem 273:133–142Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • J. Oberwinkler
    • 1
  • S. E. Philipp
    • 1
  1. 1.Institut für klinische und experimentelle Pharmakologie und ToxikologieUniversität des SaarlandesHomburgGermany

Personalised recommendations