Advertisement

Abstract

TRPM2 is a cation channel enabling influx of Na+ and Ca2+, leading to depolarization and increases in the cytosolic Ca2+ concentration ([Ca2+]i). It is widely expressed, e.g. in many neurons, blood cells and the endocrine pancreas. Channel gating is induced by ADP-ribose (ADPR) that binds to a Nudix box motif in the cytosolic C-terminus of the channel. Endogenous ADPR concentrations in leucocytes are sufficiently high to activate TRPM2 in the presence of an increased [Ca2+]i but probably not at resting [Ca2+]i. Another channel activator is oxidative stress, especially hydrogen peroxide (H2O2) that may act through ADPR after ADPR polymers have been formed by poly(ADP-ribose) polymerases (PARPs) and hydolysed by glycohydrolases. H2O2-stimulated TRPM2 channels essentially contribute to insulin secretion in pancreatic β-cells and alloxan-induced diabetes mellitus. Inhibition of TRPM2 channels may be achieved by channel blockers such as flufenamic acid or the anti-fungal agents clotrimazole or econazole. Selective blockers of TRPM2 are not yet available; those would be valuable for a characterization of biological roles of TRPM2 in various tissues and as potential drugs directed against oxidative cell damage, reperfusion injury or leucocyte activation. Activation of TRPM2 may be prevented by anti-oxidants, PARP inhibitors and glycohydrolase inhibitors. In future, binding of ADPR to the Nudix box may be targeted. In light of the wide-spread expression and growing list of cellular functions of TRPM2, useful therapeutic applications are expected for future drugs that block TRPM2 channels or inhibit their activation.

Keywords

Ca2+ entry Granulocytes Pancreatic beta cells ADP ribose Oxidative stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ame JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. Bioessays 26:882–893PubMedCrossRefGoogle Scholar
  2. Becker D, Blase C, Bereiter-Hahn J, et al (2005) TRPV4 exhibits a functional role in cell-volume regulation. J Cell Sci 118:2435–2440PubMedCrossRefGoogle Scholar
  3. Bessman MJ, Frick DN, O’Handley SF (1996) The MutT proteins or “Nudix” hydrolases, a family of versatile, widely distributed, “housecleaning” enzymes. J Biol Chem 271: 25059–25062PubMedCrossRefGoogle Scholar
  4. Bessman MJ, Walsh JD, Dunn CA, et al (2001) The geneygdP, associated with the invasiveness of Escherichia coli K1, designates a Nudix hydrolase, Orf176, active on adenosine (5′)-pentaphospho-(5′)-adenosine (Ap5A). J Biol Chem 276:37834–37838PubMedGoogle Scholar
  5. Cahalan MD (2001) Cell biology. Channels as enzymes. Nature 411:542–543PubMedCrossRefGoogle Scholar
  6. Chen Q, Olney JW, Lukasiewicz PD, et al (1998) Fenamates protect neurons against ischemic and excitotoxic injury in chick embryo retina. Neurosci Lett 242:163–166PubMedCrossRefGoogle Scholar
  7. Duncan LM, Deeds J, Hunter J, et al (1998) Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res 58:1515–1520PubMedGoogle Scholar
  8. Dunn CA, O’Handley SF, Frick DN, et al (1999) Studies on the ADP-ribose pyrophosphatase subfamily of the nudix hydrolases and tentative identification of trgB, a gene associated with tellurite resistance. J Biol Chem 274:32318–32324PubMedCrossRefGoogle Scholar
  9. Dunn JS, Sheehan HL, McLetchie NGB (1943) Necrosis of islets of Langerhans. Lancet 1:484–487Google Scholar
  10. Dzeja C, Hagen V, Kaupp UB, et al (1999) Ca2+ permeation in cyclic nucleotide-gated channels. EMBO J 18:131–144PubMedCrossRefGoogle Scholar
  11. Elsner M, Tiedge M, Guldbakke B, et al (2002) Importance of the GLUT2 glucose transporter for pancreatic beta cell toxicity of alloxan. Diabetologia 45:1542–1549PubMedCrossRefGoogle Scholar
  12. Fonfria E, Marshall IC, Benham CD, et al (2004) TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol 143:186–192PubMedCrossRefGoogle Scholar
  13. Fonfria E, Marshall IC, Boyfield I, et al (2005) Amyloid beta-peptide(1–42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures. J Neurochem 95:715–723PubMedCrossRefGoogle Scholar
  14. Frings S, Seifert R, Godde M, et al (1995) Profoundly different calcium permeation and blockage determine the specific function of distinct cyclic nucleotide-gated channels. Neuron 15:169–179PubMedCrossRefGoogle Scholar
  15. Gasser A, Guse AH (2005) Determination of intracellular concentrations of the TRPM2 agonist ADP-ribose by reversed-phase HPLC. J Chromatogr B Analyt Technol Biomed Life Sci 821:181–187PubMedGoogle Scholar
  16. Gasser A, Glassmeier G, Fliegert R, et al (2006) Activation of T cell calcium influx by the second messenger ADP-ribose. J Biol Chem 281:2489–2496PubMedCrossRefGoogle Scholar
  17. Guse HA (2000) Cyclic ADP-ribose. J Mol Med 78:26–35PubMedCrossRefGoogle Scholar
  18. Halaszovich CR, Zitt C, Jüngling E, et al (2000) Inhibition of TRP3 channels by lanthanides. Block from the cytosolic side of the plasma membrane. J Biol Chem 275:37423–37428PubMedCrossRefGoogle Scholar
  19. Hara Y, Wakamori M, Ishii M, et al (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9:163–173PubMedCrossRefGoogle Scholar
  20. Harteneck C (2005) Function and pharmacology of TRPM cation channels. Naunyn Schmiedebergs Arch Pharmacol 371:307–314PubMedCrossRefGoogle Scholar
  21. Heiner I, Eisfeld J, Halaszovich CR, et al (2003) Expression profile of the transient receptor potential (TRP) family in neutrophil granulocytes: evidence for currents through long TRP channel 2 induced by ADP-ribose and NAD. Biochem J 371:1045–1053PubMedCrossRefGoogle Scholar
  22. Heiner I, Radukina N, Eisfeld J, et al (2005) Regulation of TRPM2 channels in neutrophil granulocytes by ADP-ribose: a promising pharmacological target. Naunyn Schmiedebergs Arch Pharmacol 371:325–333PubMedCrossRefGoogle Scholar
  23. Heiner I, Eisfeld J, Warnstedt M, et al (2006) Endogenous ADP-ribose enables calcium-regulated cation currents through TRPM2 channels in neutrophil granulocytes. Biochem J 398:225–232PubMedCrossRefGoogle Scholar
  24. Herson PS, Ashford ML (1997) Activation of a novel non-selective cation channel by alloxan and H2O2 in the rat insulin-secreting cell line CRI-G1. J Physiol 501:59–66PubMedCrossRefGoogle Scholar
  25. Herson PS, Lee K, Pinnock RD, et al (1999) Hydrogen peroxide induces intracellular calcium overload by activation of a non-selective cation channel in an insulin-secreting cell line. J Biol Chem 274:833–841PubMedCrossRefGoogle Scholar
  26. Hill K, Benham CD, McNulty S, et al (2004a) Flufenamic acid is a pH-dependent antagonist of TRPM2 channels. Neuropharmacology 47:450–460PubMedCrossRefGoogle Scholar
  27. Hill K, McNulty S, Randall AD (2004b) Inhibition of TRPM2 channels by the antifungal agents clotrimazole and econazole. Naunyn Schmiedebergs Arch Pharmacol 370:227–237PubMedCrossRefGoogle Scholar
  28. Howard M, Grimaldi JC, Bazan JF, et al (1993) Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 262:1056–1059PubMedCrossRefGoogle Scholar
  29. im Walde SS, Dohle C, Schott-Ohly P, et al (2002) Molecular target structures in alloxan-induced diabetes in mice. Life Sci 71:1681–1694PubMedCrossRefGoogle Scholar
  30. Inamura K, Sano Y, Mochizuki S, et al (2003) Response to ADP-ribose by activation of TRPM2 in the CRI-G1 insulinoma cell line. J Membr Biol 191:201–207PubMedCrossRefGoogle Scholar
  31. Inoue R, Okada T, Onoue H, et al (2001) The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)-adrenoceptor-activated Ca(2+)-permeable cation channel. Circ Res 88:325–332PubMedGoogle Scholar
  32. Jensen BS, Strobaek D, Christophersen P, et al (1998) Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel. Am J Physiol 275:C848–C856PubMedGoogle Scholar
  33. Kim SJ, Shin SY, Lee JE, et al (2003) Ca2+-activated Cl channel currents in rat ventral prostate epithelial cells. Prostate 55:118–127PubMedCrossRefGoogle Scholar
  34. Kim UH, Kim MK, Kim JS, et al (1993) Purification and characterization of NAD glycohydrolase from rabbit erythrocytes. Arch Biochem Biophys 305:147–152PubMedCrossRefGoogle Scholar
  35. Kolisek M, Beck A, Fleig A, et al (2005) Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol Cell 18:61–69PubMedCrossRefGoogle Scholar
  36. Kraft R, Grimm C, Grosse K, et al (2004) Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol Cell Physiol 286:C129–C137PubMedCrossRefGoogle Scholar
  37. Krause KH, Campbell KP, Welsh MJ, et al (1990) The calcium signal and neutrophil activation. Clin Biochem 23:159–166PubMedCrossRefGoogle Scholar
  38. Kühn FJ, Lückhoff A (2004) Sites of the NUDT9-H domain critical for ADP-ribose activation of the cation channel TRPM2. J Biol Chem 279:46431–46437PubMedCrossRefGoogle Scholar
  39. Lee HM, Kim HI, Shin YK, et al (2003a) Diclofenac inhibition of sodium currents in rat dorsal root ganglion neurons. Brain Res 992:120–127PubMedCrossRefGoogle Scholar
  40. Lee N, Chen J, Sun L, et al (2003b) Expression and characterization of human transient receptor potential melastatin 3 (hTRPM3). J Biol Chem 278:20890–20897PubMedCrossRefGoogle Scholar
  41. Lee YM, Kim BJ, Kim HJ, et al (2003c) TRPC5 as a candidate for the nonselective cation channel activated by muscarinic stimulation in murine stomach. Am J Physiol Gastrointest Liver Physiol 284:G604–G616PubMedGoogle Scholar
  42. Lee YT, Wang Q (1999) Inhibition of hKv2.1, a major human neuronal voltage-gated K+ channel, by meclofenamic acid. Eur J Pharmacol 378:349–356PubMedCrossRefGoogle Scholar
  43. Levitan IB, Cibulsky SM (2001) Biochemistry. TRP ion channels—two proteins in one. Science 293:1270–1271PubMedCrossRefGoogle Scholar
  44. Li PL, Zhang DX, Ge ZD, et al (2002) Role of ADP-ribose in 11,12-EET-induced activation of KCa channels in coronary arterial smooth muscle cells. Am J Physiol Heart Circ Physiol 282:H1229–H1236PubMedGoogle Scholar
  45. McHugh D, Flemming R, Xu SZ, et al (2003) Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem 278:11002–11006PubMedCrossRefGoogle Scholar
  46. McNulty S, Fonfria E (2005) The role of TRPM channels in cell death. Pflugers Arch 451:235–242PubMedCrossRefGoogle Scholar
  47. McQuillin A, Bass NJ, Kalsi G, et al (2006) Fine mapping of a susceptibility locus for bipolar and genetically related unipolar affective disorders, to a region containing the C21ORF29 and TRPM2 genes on chromosome 21q22.3. Mol Psychiatry 11:134–142PubMedCrossRefGoogle Scholar
  48. Mehta K, Shahid U, Malavasi F (1996) Human CD38, a cell-surface protein with multiple functions. FASEB J 10:1408–1417PubMedGoogle Scholar
  49. Miller BA (2004) Inhibition of TRPM2 function by PARP inhibitors protects cells from oxidative stress-induced death. Br J Pharmacol 143:515–516PubMedCrossRefGoogle Scholar
  50. Nagamine K, Kudoh J, Minoshima S, et al (1998) Molecular cloning of a novel putative Ca2+ channel protein (TRPC7) highly expressed in brain. Genomics 54:124–131PubMedCrossRefGoogle Scholar
  51. Partida-Sanchez S, Cockayne DA, Monard S, et al (2001) Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nat Med 7:1209–1216PubMedCrossRefGoogle Scholar
  52. Peier AM, Moqrich A, Hergarden AC, et al (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715PubMedCrossRefGoogle Scholar
  53. Perraud AL, Fleig A, Dunn CA, et al (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599PubMedCrossRefGoogle Scholar
  54. Perraud AL, Shen B, Dunn CA, et al (2003) NUDT9, a member of the Nudix hydrolase family, is an evolutionarily conserved mitochondrial ADP-ribose pyrophosphatase. J Biol Chem 278:1794–1801PubMedCrossRefGoogle Scholar
  55. Pfister M, Ogilvie A, da Silva CP, et al (2001) NAD degradation and regulation of CD38 expression by human monocytes/macrophages. Eur J Biochem 268:5601–5608PubMedCrossRefGoogle Scholar
  56. Qian F, Huang P, Ma L, et al (2002) TRP genes: candidates for nonselective cation channels and store-operated channels in insulin-secreting cells. Diabetes 51Suppl 1:S183–S189PubMedGoogle Scholar
  57. Ruf A, de Murcia G, Schulz GE (1998) Inhibitor and NAD+ binding to poly(ADP-ribose) polymerase as derived from crystal structures and homology modeling. Biochemistry 37:3893–3900PubMedCrossRefGoogle Scholar
  58. Runnels LW, Yue L, Clapham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291:1043–1047PubMedCrossRefGoogle Scholar
  59. Sano Y, Inamura K, Miyake A, et al (2001) Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293:1327–1330PubMedCrossRefGoogle Scholar
  60. Scharenberg AM (2005) TRPM2 and TRPM7: channel/enzyme fusions to generate novel intracellular sensors. Pflugers Arch 451:220–227PubMedCrossRefGoogle Scholar
  61. Schuber F, Lund FE (2004) Structure and enzymology of ADP-ribosyl cyclases: conserved enzymes that produce multiple calcium mobilizing metabolites. Curr Mol Med 4:249–261PubMedCrossRefGoogle Scholar
  62. Shen BW, Perraud AL, Scharenberg A, et al (2003) The crystal structure and mutational analysis of human NUDT9. J Mol Biol 332:385–398PubMedCrossRefGoogle Scholar
  63. Smith MA, Herson PS, Lee K, et al (2003) Hydrogen-peroxide-induced toxicity of rat striatal neurones involves activation of non-selective cation channel. J Physiol (Lond) 547:417–425PubMedCrossRefGoogle Scholar
  64. Togashi K, Hara Y, Tominaga T, Higashi T, Konishi Y, Mori Y, Tominaga M (2006) TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J 25:1804–1815PubMedCrossRefGoogle Scholar
  65. Tousova K, Vyklicky L, Susankova K, et al (2005) Gadolinium activates and sensitizes the vanilloid receptor TRPV1 through the external protonation sites. Mol Cell Neurosci 30:207–217PubMedCrossRefGoogle Scholar
  66. Tsavaler L, Shapero MH, Morkowski S, et al (2001) Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res 61:3760–3769PubMedGoogle Scholar
  67. Uemura T, Kudoh J, Noda S, et al (2005) Characterization of human and mouse TRPM2 genes: identification of a novel N-terminal truncated protein specifically expressed in human striatum. Biochem Biophys Res Commun 328:1232–1243PubMedCrossRefGoogle Scholar
  68. Ullrich ND, Voets T, Prenen J, et al (2005) Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 frommice. Cell Calcium 37:267–278PubMedCrossRefGoogle Scholar
  69. Wehage E, Eisfeld J, Heiner I, et al (2002) Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem 277:23150–23156PubMedCrossRefGoogle Scholar
  70. Xu C, Macciardi F, Li PP, et al (2006) Association of the putative susceptibility gene, transient receptor potential protein melastatin type 2, with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 141:36–43PubMedGoogle Scholar
  71. Yang KT, Chang WL, Yang PC, et al (2006) Activation of the transient receptor potential M2 channel and poly(ADP-ribose) polymerase is involved in oxidative stress-induced cardiomyocyte death. Cell Death Differ 13:1815–1826PubMedCrossRefGoogle Scholar
  72. Yost DA, Anderson BM (1981) Purification and properties of the soluble NAD glycohydrolase from Bungarus fasciatus venom. J Biol Chem 256:3647–3653PubMedGoogle Scholar
  73. Zhang W, Chu X, Tong Q, et al (2003) A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death. J Biol Chem 278:16222–16229PubMedCrossRefGoogle Scholar
  74. Zhang W, Hirschler-Laszkiewicz I, Tong Q, et al (2006) TRPM2 is an ion channel which modulates hematopoietic cell death through activation of caspases and PARP cleavage. Am J Physiol Cell Physiol 290:C1146–C1159PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • J. Eisfeld
    • 1
  • A. Lückhoff
    • 1
  1. 1.Institut für Physiologie, Medizinische FakultätRWTH AachenAachenGermany

Personalised recommendations