Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 179))

Abstract

TRPM2 is a cation channel enabling influx of Na+ and Ca2+, leading to depolarization and increases in the cytosolic Ca2+ concentration ([Ca2+]i). It is widely expressed, e.g. in many neurons, blood cells and the endocrine pancreas. Channel gating is induced by ADP-ribose (ADPR) that binds to a Nudix box motif in the cytosolic C-terminus of the channel. Endogenous ADPR concentrations in leucocytes are sufficiently high to activate TRPM2 in the presence of an increased [Ca2+]i but probably not at resting [Ca2+]i. Another channel activator is oxidative stress, especially hydrogen peroxide (H2O2) that may act through ADPR after ADPR polymers have been formed by poly(ADP-ribose) polymerases (PARPs) and hydolysed by glycohydrolases. H2O2-stimulated TRPM2 channels essentially contribute to insulin secretion in pancreatic β-cells and alloxan-induced diabetes mellitus. Inhibition of TRPM2 channels may be achieved by channel blockers such as flufenamic acid or the anti-fungal agents clotrimazole or econazole. Selective blockers of TRPM2 are not yet available; those would be valuable for a characterization of biological roles of TRPM2 in various tissues and as potential drugs directed against oxidative cell damage, reperfusion injury or leucocyte activation. Activation of TRPM2 may be prevented by anti-oxidants, PARP inhibitors and glycohydrolase inhibitors. In future, binding of ADPR to the Nudix box may be targeted. In light of the wide-spread expression and growing list of cellular functions of TRPM2, useful therapeutic applications are expected for future drugs that block TRPM2 channels or inhibit their activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ame JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. Bioessays 26:882–893

    Article  CAS  PubMed  Google Scholar 

  • Becker D, Blase C, Bereiter-Hahn J, et al (2005) TRPV4 exhibits a functional role in cell-volume regulation. J Cell Sci 118:2435–2440

    Article  CAS  PubMed  Google Scholar 

  • Bessman MJ, Frick DN, O’Handley SF (1996) The MutT proteins or “Nudix” hydrolases, a family of versatile, widely distributed, “housecleaning” enzymes. J Biol Chem 271: 25059–25062

    Article  CAS  PubMed  Google Scholar 

  • Bessman MJ, Walsh JD, Dunn CA, et al (2001) The geneygdP, associated with the invasiveness of Escherichia coli K1, designates a Nudix hydrolase, Orf176, active on adenosine (5′)-pentaphospho-(5′)-adenosine (Ap5A). J Biol Chem 276:37834–37838

    CAS  PubMed  Google Scholar 

  • Cahalan MD (2001) Cell biology. Channels as enzymes. Nature 411:542–543

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Olney JW, Lukasiewicz PD, et al (1998) Fenamates protect neurons against ischemic and excitotoxic injury in chick embryo retina. Neurosci Lett 242:163–166

    Article  CAS  PubMed  Google Scholar 

  • Duncan LM, Deeds J, Hunter J, et al (1998) Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res 58:1515–1520

    CAS  PubMed  Google Scholar 

  • Dunn CA, O’Handley SF, Frick DN, et al (1999) Studies on the ADP-ribose pyrophosphatase subfamily of the nudix hydrolases and tentative identification of trgB, a gene associated with tellurite resistance. J Biol Chem 274:32318–32324

    Article  CAS  PubMed  Google Scholar 

  • Dunn JS, Sheehan HL, McLetchie NGB (1943) Necrosis of islets of Langerhans. Lancet 1:484–487

    Google Scholar 

  • Dzeja C, Hagen V, Kaupp UB, et al (1999) Ca2+ permeation in cyclic nucleotide-gated channels. EMBO J 18:131–144

    Article  CAS  PubMed  Google Scholar 

  • Elsner M, Tiedge M, Guldbakke B, et al (2002) Importance of the GLUT2 glucose transporter for pancreatic beta cell toxicity of alloxan. Diabetologia 45:1542–1549

    Article  CAS  PubMed  Google Scholar 

  • Fonfria E, Marshall IC, Benham CD, et al (2004) TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol 143:186–192

    Article  CAS  PubMed  Google Scholar 

  • Fonfria E, Marshall IC, Boyfield I, et al (2005) Amyloid beta-peptide(1–42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures. J Neurochem 95:715–723

    Article  CAS  PubMed  Google Scholar 

  • Frings S, Seifert R, Godde M, et al (1995) Profoundly different calcium permeation and blockage determine the specific function of distinct cyclic nucleotide-gated channels. Neuron 15:169–179

    Article  CAS  PubMed  Google Scholar 

  • Gasser A, Guse AH (2005) Determination of intracellular concentrations of the TRPM2 agonist ADP-ribose by reversed-phase HPLC. J Chromatogr B Analyt Technol Biomed Life Sci 821:181–187

    CAS  PubMed  Google Scholar 

  • Gasser A, Glassmeier G, Fliegert R, et al (2006) Activation of T cell calcium influx by the second messenger ADP-ribose. J Biol Chem 281:2489–2496

    Article  CAS  PubMed  Google Scholar 

  • Guse HA (2000) Cyclic ADP-ribose. J Mol Med 78:26–35

    Article  CAS  PubMed  Google Scholar 

  • Halaszovich CR, Zitt C, Jüngling E, et al (2000) Inhibition of TRP3 channels by lanthanides. Block from the cytosolic side of the plasma membrane. J Biol Chem 275:37423–37428

    Article  CAS  PubMed  Google Scholar 

  • Hara Y, Wakamori M, Ishii M, et al (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9:163–173

    Article  CAS  PubMed  Google Scholar 

  • Harteneck C (2005) Function and pharmacology of TRPM cation channels. Naunyn Schmiedebergs Arch Pharmacol 371:307–314

    Article  CAS  PubMed  Google Scholar 

  • Heiner I, Eisfeld J, Halaszovich CR, et al (2003) Expression profile of the transient receptor potential (TRP) family in neutrophil granulocytes: evidence for currents through long TRP channel 2 induced by ADP-ribose and NAD. Biochem J 371:1045–1053

    Article  CAS  PubMed  Google Scholar 

  • Heiner I, Radukina N, Eisfeld J, et al (2005) Regulation of TRPM2 channels in neutrophil granulocytes by ADP-ribose: a promising pharmacological target. Naunyn Schmiedebergs Arch Pharmacol 371:325–333

    Article  CAS  PubMed  Google Scholar 

  • Heiner I, Eisfeld J, Warnstedt M, et al (2006) Endogenous ADP-ribose enables calcium-regulated cation currents through TRPM2 channels in neutrophil granulocytes. Biochem J 398:225–232

    Article  CAS  PubMed  Google Scholar 

  • Herson PS, Ashford ML (1997) Activation of a novel non-selective cation channel by alloxan and H2O2 in the rat insulin-secreting cell line CRI-G1. J Physiol 501:59–66

    Article  CAS  PubMed  Google Scholar 

  • Herson PS, Lee K, Pinnock RD, et al (1999) Hydrogen peroxide induces intracellular calcium overload by activation of a non-selective cation channel in an insulin-secreting cell line. J Biol Chem 274:833–841

    Article  CAS  PubMed  Google Scholar 

  • Hill K, Benham CD, McNulty S, et al (2004a) Flufenamic acid is a pH-dependent antagonist of TRPM2 channels. Neuropharmacology 47:450–460

    Article  CAS  PubMed  Google Scholar 

  • Hill K, McNulty S, Randall AD (2004b) Inhibition of TRPM2 channels by the antifungal agents clotrimazole and econazole. Naunyn Schmiedebergs Arch Pharmacol 370:227–237

    Article  CAS  PubMed  Google Scholar 

  • Howard M, Grimaldi JC, Bazan JF, et al (1993) Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 262:1056–1059

    Article  CAS  PubMed  Google Scholar 

  • im Walde SS, Dohle C, Schott-Ohly P, et al (2002) Molecular target structures in alloxan-induced diabetes in mice. Life Sci 71:1681–1694

    Article  PubMed  Google Scholar 

  • Inamura K, Sano Y, Mochizuki S, et al (2003) Response to ADP-ribose by activation of TRPM2 in the CRI-G1 insulinoma cell line. J Membr Biol 191:201–207

    Article  CAS  PubMed  Google Scholar 

  • Inoue R, Okada T, Onoue H, et al (2001) The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)-adrenoceptor-activated Ca(2+)-permeable cation channel. Circ Res 88:325–332

    CAS  PubMed  Google Scholar 

  • Jensen BS, Strobaek D, Christophersen P, et al (1998) Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel. Am J Physiol 275:C848–C856

    CAS  PubMed  Google Scholar 

  • Kim SJ, Shin SY, Lee JE, et al (2003) Ca2+-activated Cl channel currents in rat ventral prostate epithelial cells. Prostate 55:118–127

    Article  CAS  PubMed  Google Scholar 

  • Kim UH, Kim MK, Kim JS, et al (1993) Purification and characterization of NAD glycohydrolase from rabbit erythrocytes. Arch Biochem Biophys 305:147–152

    Article  CAS  PubMed  Google Scholar 

  • Kolisek M, Beck A, Fleig A, et al (2005) Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol Cell 18:61–69

    Article  CAS  PubMed  Google Scholar 

  • Kraft R, Grimm C, Grosse K, et al (2004) Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol Cell Physiol 286:C129–C137

    Article  CAS  PubMed  Google Scholar 

  • Krause KH, Campbell KP, Welsh MJ, et al (1990) The calcium signal and neutrophil activation. Clin Biochem 23:159–166

    Article  CAS  PubMed  Google Scholar 

  • Kühn FJ, Lückhoff A (2004) Sites of the NUDT9-H domain critical for ADP-ribose activation of the cation channel TRPM2. J Biol Chem 279:46431–46437

    Article  PubMed  Google Scholar 

  • Lee HM, Kim HI, Shin YK, et al (2003a) Diclofenac inhibition of sodium currents in rat dorsal root ganglion neurons. Brain Res 992:120–127

    Article  CAS  PubMed  Google Scholar 

  • Lee N, Chen J, Sun L, et al (2003b) Expression and characterization of human transient receptor potential melastatin 3 (hTRPM3). J Biol Chem 278:20890–20897

    Article  CAS  PubMed  Google Scholar 

  • Lee YM, Kim BJ, Kim HJ, et al (2003c) TRPC5 as a candidate for the nonselective cation channel activated by muscarinic stimulation in murine stomach. Am J Physiol Gastrointest Liver Physiol 284:G604–G616

    CAS  PubMed  Google Scholar 

  • Lee YT, Wang Q (1999) Inhibition of hKv2.1, a major human neuronal voltage-gated K+ channel, by meclofenamic acid. Eur J Pharmacol 378:349–356

    Article  CAS  PubMed  Google Scholar 

  • Levitan IB, Cibulsky SM (2001) Biochemistry. TRP ion channels—two proteins in one. Science 293:1270–1271

    Article  CAS  PubMed  Google Scholar 

  • Li PL, Zhang DX, Ge ZD, et al (2002) Role of ADP-ribose in 11,12-EET-induced activation of KCa channels in coronary arterial smooth muscle cells. Am J Physiol Heart Circ Physiol 282:H1229–H1236

    CAS  PubMed  Google Scholar 

  • McHugh D, Flemming R, Xu SZ, et al (2003) Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem 278:11002–11006

    Article  CAS  PubMed  Google Scholar 

  • McNulty S, Fonfria E (2005) The role of TRPM channels in cell death. Pflugers Arch 451:235–242

    Article  CAS  PubMed  Google Scholar 

  • McQuillin A, Bass NJ, Kalsi G, et al (2006) Fine mapping of a susceptibility locus for bipolar and genetically related unipolar affective disorders, to a region containing the C21ORF29 and TRPM2 genes on chromosome 21q22.3. Mol Psychiatry 11:134–142

    Article  CAS  PubMed  Google Scholar 

  • Mehta K, Shahid U, Malavasi F (1996) Human CD38, a cell-surface protein with multiple functions. FASEB J 10:1408–1417

    CAS  PubMed  Google Scholar 

  • Miller BA (2004) Inhibition of TRPM2 function by PARP inhibitors protects cells from oxidative stress-induced death. Br J Pharmacol 143:515–516

    Article  CAS  PubMed  Google Scholar 

  • Nagamine K, Kudoh J, Minoshima S, et al (1998) Molecular cloning of a novel putative Ca2+ channel protein (TRPC7) highly expressed in brain. Genomics 54:124–131

    Article  CAS  PubMed  Google Scholar 

  • Partida-Sanchez S, Cockayne DA, Monard S, et al (2001) Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nat Med 7:1209–1216

    Article  CAS  PubMed  Google Scholar 

  • Peier AM, Moqrich A, Hergarden AC, et al (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    Article  CAS  PubMed  Google Scholar 

  • Perraud AL, Fleig A, Dunn CA, et al (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599

    Article  CAS  PubMed  Google Scholar 

  • Perraud AL, Shen B, Dunn CA, et al (2003) NUDT9, a member of the Nudix hydrolase family, is an evolutionarily conserved mitochondrial ADP-ribose pyrophosphatase. J Biol Chem 278:1794–1801

    Article  CAS  PubMed  Google Scholar 

  • Pfister M, Ogilvie A, da Silva CP, et al (2001) NAD degradation and regulation of CD38 expression by human monocytes/macrophages. Eur J Biochem 268:5601–5608

    Article  CAS  PubMed  Google Scholar 

  • Qian F, Huang P, Ma L, et al (2002) TRP genes: candidates for nonselective cation channels and store-operated channels in insulin-secreting cells. Diabetes 51Suppl 1:S183–S189

    CAS  PubMed  Google Scholar 

  • Ruf A, de Murcia G, Schulz GE (1998) Inhibitor and NAD+ binding to poly(ADP-ribose) polymerase as derived from crystal structures and homology modeling. Biochemistry 37:3893–3900

    Article  CAS  PubMed  Google Scholar 

  • Runnels LW, Yue L, Clapham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291:1043–1047

    Article  CAS  PubMed  Google Scholar 

  • Sano Y, Inamura K, Miyake A, et al (2001) Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293:1327–1330

    Article  CAS  PubMed  Google Scholar 

  • Scharenberg AM (2005) TRPM2 and TRPM7: channel/enzyme fusions to generate novel intracellular sensors. Pflugers Arch 451:220–227

    Article  CAS  PubMed  Google Scholar 

  • Schuber F, Lund FE (2004) Structure and enzymology of ADP-ribosyl cyclases: conserved enzymes that produce multiple calcium mobilizing metabolites. Curr Mol Med 4:249–261

    Article  CAS  PubMed  Google Scholar 

  • Shen BW, Perraud AL, Scharenberg A, et al (2003) The crystal structure and mutational analysis of human NUDT9. J Mol Biol 332:385–398

    Article  CAS  PubMed  Google Scholar 

  • Smith MA, Herson PS, Lee K, et al (2003) Hydrogen-peroxide-induced toxicity of rat striatal neurones involves activation of non-selective cation channel. J Physiol (Lond) 547:417–425

    Article  CAS  PubMed  Google Scholar 

  • Togashi K, Hara Y, Tominaga T, Higashi T, Konishi Y, Mori Y, Tominaga M (2006) TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J 25:1804–1815

    Article  CAS  PubMed  Google Scholar 

  • Tousova K, Vyklicky L, Susankova K, et al (2005) Gadolinium activates and sensitizes the vanilloid receptor TRPV1 through the external protonation sites. Mol Cell Neurosci 30:207–217

    Article  CAS  PubMed  Google Scholar 

  • Tsavaler L, Shapero MH, Morkowski S, et al (2001) Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res 61:3760–3769

    CAS  PubMed  Google Scholar 

  • Uemura T, Kudoh J, Noda S, et al (2005) Characterization of human and mouse TRPM2 genes: identification of a novel N-terminal truncated protein specifically expressed in human striatum. Biochem Biophys Res Commun 328:1232–1243

    Article  CAS  PubMed  Google Scholar 

  • Ullrich ND, Voets T, Prenen J, et al (2005) Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 frommice. Cell Calcium 37:267–278

    Article  CAS  PubMed  Google Scholar 

  • Wehage E, Eisfeld J, Heiner I, et al (2002) Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem 277:23150–23156

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Macciardi F, Li PP, et al (2006) Association of the putative susceptibility gene, transient receptor potential protein melastatin type 2, with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 141:36–43

    PubMed  Google Scholar 

  • Yang KT, Chang WL, Yang PC, et al (2006) Activation of the transient receptor potential M2 channel and poly(ADP-ribose) polymerase is involved in oxidative stress-induced cardiomyocyte death. Cell Death Differ 13:1815–1826

    Article  CAS  PubMed  Google Scholar 

  • Yost DA, Anderson BM (1981) Purification and properties of the soluble NAD glycohydrolase from Bungarus fasciatus venom. J Biol Chem 256:3647–3653

    CAS  PubMed  Google Scholar 

  • Zhang W, Chu X, Tong Q, et al (2003) A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death. J Biol Chem 278:16222–16229

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Hirschler-Laszkiewicz I, Tong Q, et al (2006) TRPM2 is an ion channel which modulates hematopoietic cell death through activation of caspases and PARP cleavage. Am J Physiol Cell Physiol 290:C1146–C1159

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eisfeld, J., Lückhoff, A. (2007). TRPM2. In: Flockerzi, V., Nilius, B. (eds) Transient Receptor Potential (TRP) Channels. Handbook of Experimental Pharmacology, vol 179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34891-7_14

Download citation

Publish with us

Policies and ethics