Advertisement

2-Aminoethoxydiphenyl Borate as a Common Activator of TRPV1, TRPV2, and TRPV3 Channels

  • C. K. Colton
  • M. X. Zhu
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 179)

Abstract

2-Aminoethoxydiphenyl borate (2APB) had been depicted as a universal blocker of transient receptor potential (TRP) channels. While evidence has accumulated showing that some TRP channels are indeed inhibited by 2APB, especially in heterologous expression systems, there are other TRP channels that are unaffected or affected very little by this compound. More interestingly, the thermosensitive TRPV1, TRPV2, and TRPV3 channels are activated by 2APB. This has been demonstrated both in heterologous systems and in native tissues that express these channels. A number of 2APB analogs have been examined for their effects on native store-operated channels and heterologously expressed TRPV3. These studies revealed a complex mechanism of action for 2APB and its analogs on ion channels. In this review, we have summarized the current results on 2APB-induced activation of TRPV1-3 and discussed the potential mechanisms by which 2APB may regulate TRP channels.

Keywords

2APB Transient receptor potential TRPC Store-operated channel Thermosensitive channel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antkowiak B (2001) How do general anaesthetics work? Naturwissenschaften 88:201–213PubMedCrossRefGoogle Scholar
  2. Bender F, Mederos Y Schnitzler M, Li Y, Ji A, Weihe E, Gudermann T, Schafer M (2005) The temperature-sensitive ion channel TRPV2 is endogenously expressed and functional in the primary sensory cell line F-11. Cell Physiol Biochem 15:183–194PubMedCrossRefGoogle Scholar
  3. Calixto JB, Kassuya CA, Andre E, Ferreira J (2005) Contribution of natural products to the discovery of the transient receptor potential (TRP) channels family and their functions. Pharmacol Ther 106:179–208PubMedCrossRefGoogle Scholar
  4. Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ (2004a) TRPV3 and TRPV4 mediate warmth-evoked currents in primary mouse keratinocytes. J Biol Chem 279:21569–21575PubMedCrossRefGoogle Scholar
  5. Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ (2004b) 2-Aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3. J Neurosci 24:5177–5182PubMedCrossRefGoogle Scholar
  6. Chung MK, Guler AD, Caterina MJ (2005) Biphasic currents evoked by chemical or thermal activation of the heat-gated ion channel, TRPV3. J Biol Chem 280:15928–15941PubMedCrossRefGoogle Scholar
  7. Chyb S, Raghu P, Hardie RC (1999) Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL. Nature 397:255–259PubMedCrossRefGoogle Scholar
  8. Clapham DE, Runnels LW, Strubing C (2001) The TRP ion channel family. Nat Rev Neurosci 2:387–396PubMedCrossRefGoogle Scholar
  9. Delmas P, Wanaverbecq N, Abogadie FC, Mistry M, Brown DA (2002) Signaling microdomains define the specificity of receptor-mediated InsP(3) pathways in neurons. Neuron 34:209–220PubMedCrossRefGoogle Scholar
  10. Diver JM, Sage SO, Rosado JA (2001) The inositol trisphosphate receptor antagonist 2-aminoethoxydiphenylborate (2-APB) blocks Ca2+ entry channels in human platelets: cautions for its use in studying Ca2+ influx. Cell Calcium 30:323–329PubMedCrossRefGoogle Scholar
  11. Dobrydneva Y, Blackmore P (2001) 2-Aminoethoxydiphenyl borate directly inhibits store-operated calcium entry channels in human platelets. Mol Pharmacol 60:541–552PubMedGoogle Scholar
  12. Dobrydneva Y, Abelt CJ, Dovel B, Thadigiri CM, Williams RL, Blackmore PF (2006) 2-Aminoethoxydiphenyl borate as a prototype drug for a group of structurally related calcium channel blockers in human platelets. Mol Pharmacol 69:247–256PubMedGoogle Scholar
  13. Doly S, Fischer J, Salio C, Conrath M (2004) The vanilloid receptor-1 is expressed in rat spinal dorsal horn astrocytes. Neurosci Lett 357:123–126PubMedCrossRefGoogle Scholar
  14. Gu Q, Lin RL, Hu HZ, Zhu MX, Lee LY (2005) 2-aminoethoxydiphenyl borate stimulates pulmonary C neurons via the activation of TRPV channels. Am J Physiol Lung Cell Mol Physiol 288:L932–L941PubMedCrossRefGoogle Scholar
  15. Guatteo E, Chung KK, Bowala TK, Bernardi G, Mercuri NB, Lipski J (2005) Temperature sensitivity of dopaminergic neurons of the substantia nigra pars compacta: involvement of transient receptor potential channels. J Neurophysiol 94:3069–3080PubMedCrossRefGoogle Scholar
  16. Hanano T, Hara Y, Shi J, Morita H, Umebayashi C, Mori E, Sumimoto H, Ito Y, Mori Y, Inoue R (2004) Involvement of TRPM7 in cell growth as a spontaneously activated Ca2+ entry pathway in human retinoblastoma cells. J Pharmacol Sci 95:403–419PubMedCrossRefGoogle Scholar
  17. Hermosura MC, Monteilh-Zoller MK, Scharenberg AM, Penner R, Fleig A (2002) Dissociation of the store-operated calcium current ICRAC and the Mg-nucleotide-regulated metal ion current MagNuM. J Physiol 539:445–458PubMedCrossRefGoogle Scholar
  18. Hu HZ, Gu Q, Wang C, Colton CK, Tang J, Kinoshita-Kawada M, Lee LY, Wood JD, Zhu MX (2004) 2-Aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J Biol Chem 279:35741–35748PubMedCrossRefGoogle Scholar
  19. Hu HZ, Xiao R, Wang C, Gao N, Colton CK, Wood JD, Zhu MX (2006) Potentiation of TRPV3 channel function by unsaturated fatty acids. J Cell Physiol 208:201–212PubMedCrossRefGoogle Scholar
  20. Jia Y, Wang X, Varty L, Rizzo CA, Yang R, Correll CC, Phelps PT, Egan RW, Hey JA (2004) Functional TRPV4 channels are expressed in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 287:L272–L278PubMedCrossRefGoogle Scholar
  21. Kahn-Kirby AH, Dantzker JL, Apicella AJ, Schafer WR, Browse J, Bargmann CI, Watts JL (2004) Specific polyunsaturated fatty acids drive TRPV-dependent sensory signaling in vivo. Cell 119:889–900PubMedCrossRefGoogle Scholar
  22. Kashiba H, Uchida Y, Takeda D, Nishigori A, Ueda Y, Kuribayashi K, Ohshima M (2004) TRPV2-immunoreactive intrinsic neurons in the rat intestine. Neurosci Lett 366:193–196PubMedCrossRefGoogle Scholar
  23. Kim CS, Kawada T, Kim BS, Han IS, Choe SY, Kurata T, Yu R (2003) Capsaicin exhibits anti-inflammatory property by inhibiting IkB-a degradation in LPS-stimulated peritoneal macrophages. Cell Signal 15:299–306PubMedCrossRefGoogle Scholar
  24. Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S (2002) Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol 4:191–197PubMedCrossRefGoogle Scholar
  25. Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654PubMedCrossRefGoogle Scholar
  26. Lievremont JP, Bird GS, Putney JW Jr (2005) Mechanism of inhibition of TRPC cation channels by 2-aminoethoxydiphenylborane. Mol Pharmacol 68:758–762PubMedGoogle Scholar
  27. Liu B, Hui K, Qin F (2003) Thermodynamics of heat activation of single capsaicin ion channels VR1. Biophys J 85:2988–3006PubMedGoogle Scholar
  28. Lucas P, Ukhanov K, Leinders-Zufall T, Zufall F (2003) A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 40:551–561PubMedCrossRefGoogle Scholar
  29. Ma HT, Venkatachalam K, Rys-Sikora KE, He LP, Zheng F, Gill DL (2003) Modification of phospholipase C-gamma-induced Ca2+ signal generation by 2-aminoethoxydiphenyl borate. Biochem J 376:667–676PubMedCrossRefGoogle Scholar
  30. Maruyama T, Kanaji T, Nakade S, Kanno T, Mikoshiba K (1997) 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem (Tokyo) 122:498–505PubMedGoogle Scholar
  31. Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN, Spencer KS, Andahazy M, Story GM, Patapoutian A (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307:1468–1472PubMedCrossRefGoogle Scholar
  32. Muraki K, Iwata Y, Katanosaka Y, Ito T, Ohya S, Shigekawa M, Imaizumi Y (2003) TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 93:829–838PubMedCrossRefGoogle Scholar
  33. Nilius B, Prenen J, Vennekens R, Hoenderop JG, Bindels RJ, Droogmans G (2001) Pharmacological modulation of monovalent cation currents through the epithelial Ca2+ channel ECaC1. Br J Pharmacol 134:453–462PubMedCrossRefGoogle Scholar
  34. Nöth H (1970) Some recent developments in boron-nitrogen chemistry. In: Brotherton RJ, Steinberg H (eds) Progress in boron chemistry. Pergamon Press, New York, pp 211–311Google Scholar
  35. North C, Cafiso DS (1997) Contrasting membrane localization and behavior of halogenated cyclobutanes that follow or violate the Meyer-Overton hypothesis of general anesthetic potency. Biophys J 72:1754–1761PubMedCrossRefGoogle Scholar
  36. Patapoutian A, Peier AM, Story GM, Viswanath V (2003) ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat Rev Neurosci 4:529–539PubMedCrossRefGoogle Scholar
  37. Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, Story GM, Colley S, Hogenesch JB, McIntyre P, Bevan S, Patapoutian A (2002) A heat-sensitive TRP channel expressed in keratinocytes. Science 296:2046–2049PubMedCrossRefGoogle Scholar
  38. Prakriya M, Lewis RS (2001) Potentiation and inhibition of Ca2+ release-activated Ca2+ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors. J Physiol 536:3–19PubMedCrossRefGoogle Scholar
  39. Prakriya M, Lewis RS (2002) Separation and characterization of currents through store-operated CRAC channels and Mg2+-inhibited cation (MIC) channels. J Gen Physiol 119:487–507PubMedCrossRefGoogle Scholar
  40. Prescott ED, Julius D (2003) A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300:1284–1288PubMedCrossRefGoogle Scholar
  41. Rettig SJ, Trotter J (1976) Crystal and molecular structure of B, B-bis(p-tolyl)boroxazolidine and the orthorhombic form of B,B-diphenylboroxazolidine. Can J Chem 54:3130–3141CrossRefGoogle Scholar
  42. Rosado JA, Brownlow SL, Sage SO (2002) Endogenously expressed Trp1 is involved in store-mediated Ca2+ entry by conformational coupling in human platelets. J Biol Chem 277:42157–42163PubMedCrossRefGoogle Scholar
  43. Schindl R, Kahr H, Graz I, Groschner K, Romanin C (2002) Store depletion-activated CaT1 currents in rat basophilic leukemia mast cells are inhibited by 2-aminoethoxydiphenyl borate. Evidence for a regulatory component that controls activation of both CaT1 and CRAC (Ca2+ release-activated Ca2+ channel) channels. J Biol Chem 277:26950–26958PubMedCrossRefGoogle Scholar
  44. Strang CJ, Henson E, Okamoto Y, Paz MA, Gallop PM (1989) Separation and determination of alpha-amino acids by boroxazolidone formation. Anal Biochem 178:278–286CrossRefGoogle Scholar
  45. Sydorenko V, Shuba Y, Thebault S, Roudbaraki M, Lepage G, Prevarskaya N, Skryma R (2003) Receptor-coupled, DAG-gated Ca2+-permeable cationic channels in LNCaP human prostate cancer epithelial cells. J Physiol 548:823–836PubMedCrossRefGoogle Scholar
  46. Tominaga M, Tominaga T (2005) Structure and function of TRPV1. Pflugers Arch 451:143–150PubMedCrossRefGoogle Scholar
  47. Tozzi A, Bengtson CP, Longone P, Carignani C, Fusco FR, Bernardi G, Mercuri NB (2003) Involvement of transient receptor potential-like channels in responses to mGluR-I activation in midbrain dopamine neurons. Eur J Neurosci 18:2133–2145PubMedCrossRefGoogle Scholar
  48. Trebak M, Bird GS, McKay RR, Putney JW Jr (2002) Comparison of human TRPC3 channels in receptor-activated and store-operated modes. Differential sensitivity to channel blockers suggests fundamental differences in channel composition. J Biol Chem 277:21617–21623PubMedCrossRefGoogle Scholar
  49. van Rossum DB, Patterson RL, Ma HT, Gill DL (2000) Ca2+ entry mediated by store depletion, S-nitrosylation, and TRP3 channels. Comparison of coupling and function. J Biol Chem 275:28562–28568PubMedCrossRefGoogle Scholar
  50. Voets T, Prenen J, Fleig A, Vennekens R, Watanabe H, Hoenderop JG, Bindels RJ, Droogmans G, Penner R, Nilius B (2001) CaT1 and the calcium release-activated calcium channel manifest distinct pore properties. J Biol Chem 276:47767–47770PubMedGoogle Scholar
  51. Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, Ge P, Lilly J, Silos-Santiago I, Xie Y, DiStefano PS, Curtis R, Clapham DE (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418:181–186PubMedCrossRefGoogle Scholar
  52. Xu SZ, Zeng F, Boulay G, Grimm C, Harteneck C, Beech DJ (2005) Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: a differential, extracellular and voltage-dependent effect. Br J Pharmacol 145:405–414PubMedCrossRefGoogle Scholar
  53. Yue L, Peng JB, Hediger MA, Clapham DE (2001) CaT1 manifests the pore properties of the calcium-release-activated calcium channel. Nature 410:705–709PubMedCrossRefGoogle Scholar
  54. Zhu X, Jiang M, Peyton M, Boulay G, Hurst R, Stefani E, Birnbaumer L (1996) trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85:661–671PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • C. K. Colton
    • 1
  • M. X. Zhu
    • 1
  1. 1.Department of Neuroscience and Center for Molecular NeurobiologyThe Ohio State UniversityColumbusUSA

Personalised recommendations