Skip to main content

Phytoremediation of Metals and Radionuclides

  • Chapter
Environmental Bioremediation Technologies

12. Conclusion

Phytoremediation is an emerging technology for contaminated sites and is attractive due to its low cost, high public acceptance and environmental friendliness nature. It is not a panacea for all waste problems, but a supplement to the existing technologies. The technology has been demonstrated, but not yet commercially exploited. More research background for development of plant tailored for remediation needs use of genetic engineering. The concept of manipulating plant genes for toxic metal uptake is today a cutting edge research area. The likelihood of public acceptance of genetically engineered plants for phytoremediation will be welcomed, since it will clean up the environment of toxic metals. No doubt phytoremediation technology has attracted a great deal of attention in recent years and it is expected that phytoremediation will capture a significant share of the environmental market in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arthur WJ (1982) Radionuclide concentration in vegetation at a solid radioactive waste disposal area in southeastern Idaho. J Environ Qual 11(3):394–399

    Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements-A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    Google Scholar 

  • Banuelos GS, Cardon G, Mackey B, Ben-Asher J, Wu L, Beuselinck P, Akohoue S, Zambrzuski S (1993) Plant and Environment Interactions. Boron and selenium removal in boronladen soils by four sprinkler irrigated plant species. J Environ Qual 22:786–792.

    Google Scholar 

  • Banuelos GS, Ajwa HA, Mackey B, Wu LL, Cook C, Akohoue S, Zambrzuski S (1997) Evaluation of different plant species used for phytoremediation of high soil selenium. J Environ Qual 26:639–646

    Google Scholar 

  • Barry SAS, Clark SC (1978) Problems of interpreting the relationship between the amount of lead and zinc in plants and soil in metalliferous waste. New Phytol 81:773–783

    Article  Google Scholar 

  • Begonia GB, Davis CD, Begonia MFT, Gray CN (1998) Growth responses of Indian Mustard [Brassica juncea (L.) Czern.] and its phytoextraction of lead from a contaminated soil. Bull Environ Contam Toxicol 61:38–43

    Article  Google Scholar 

  • Bennett LK, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits AH (2003) Analysisof transgenic Indian mustard plants for phytoremediation of metal contaminated mine tailings. J Environ Qual 32:432–440

    Google Scholar 

  • Bhainsa KC, D’Souza SF (1999) Biosorption of uranium (VI) by Aspergillus fumigatus.13:695–699

    Google Scholar 

  • Bizily SP, Rugh CL, Meagher, R.B. (2002). Phytoextraction of hazardous organo mercurials by geneticallyengineered plants. Nature Biotechnol 18:213–217

    Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soilapplied chelating agents. Environ Sci Technol 3:860–865

    Article  Google Scholar 

  • Blanchfield LA, Hoffman LG (1984) Environmental surveillance for the INEL radioactive waste management complex and other areas. Annual Report 1983. EG & G 2312, INEL

    Google Scholar 

  • Broadley MR, Willey NJ (1997) Difference in root uptake of radiocesium by 30 plant taxa. Environ Pollut 97(1):2–11

    Article  Google Scholar 

  • Brooks RR, Morrison RS, Reeves RD, Dudley TR, Akman Y (1979) Hyperaccumulation of nickel by Alyssum linnaeua (Cruciferae). Proc Soc Lond Biol Sci 203:387–403

    Google Scholar 

  • Brooks RR, Reeves RD, Morrison RS, Malaisse F (1980). Hyperaccumulation of copper and cobalt-a review. Bull Soc Roy Bot Belg 113:166–172

    Google Scholar 

  • Clint GM, Dighton J (1992) Uptake and accumulation of radiocesium by mycorrhizal and non-mycorrizal heather plants. New Phytol 121:555–561

    Article  Google Scholar 

  • Cornish JE, Goldberg RS, Levine RS, Benemann JR (1995) Phytoremediation of soils contaminated with toxic elements and radionuclides. In: Hinchee RE, Means JL, Burris DR (eds) Bioremediation of Inorganics, Battelle Press, Columbus, OH, pp 55–63

    Google Scholar 

  • Cornish JM, Fuhrmann L, Kochian LV, D Page (1997) Phytoextraction treatability study: removal of 137Cs from soils at Brookhaven National Laboratory’s Hazardous Waste Management Facility Site. In: Progress Report. U.S. Department of Energy, February 1997

    Google Scholar 

  • Christopher CG, David RP, Christopher A, Yiqiang Z (2003) Soil selenium uptake and root system development in plant taxa differing in Se-accumulating capability. New Phytologist 159(2):391–402

    Article  Google Scholar 

  • Cunningham SD, Berti WR, Huang JWW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Article  Google Scholar 

  • Curie J, Alonso JM, Le JM, Ecker JR, Briat JF (2000) Involvement of Nramp from Arabidopsis thaliana in iron transport. Biochem J 347:749–755

    Article  Google Scholar 

  • De la Fuenta JM, Ramirez-Rodriguez Y, Cabrera-Ponce JL, Herrera Estrella L (1997) Aluminium tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568

    Article  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti Na, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combinig arsenic reductase and ?-glutamyl cysteine synthetase expression. Nature Biotechnol 20:1140–1145

    Article  Google Scholar 

  • Doksopulo EP (1961) Nickel in rocks, soils, water and plants adjacent to tail deposits of Alyssum pintoclasilvae. T.R. Dudley sp. Nov. Feddes Reporter 97:135–138

    Google Scholar 

  • Dushenkov V, Kumar PBAN, Motto R, Raskin I (1995) Rhizifiltration: The use ofplants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    Article  Google Scholar 

  • Dushenkov S, Vasudev D, Kapulnik Y, Gleba D, Fleisher D, Ting KC, Ensley B (1997) Removal of uranium from water using terrestrial plants. Environ Sci Technol 31:3468–3474

    Article  Google Scholar 

  • Dushenkov S, Mikheev A, Prokhnevsky A, Ruchko M, Sorochinsky B (1999) Phytoremediation of radiocesium-contaminated soil in the vicinity of Chernobyl, Ukraine. Environ Sci Technol 33:469–475

    Article  Google Scholar 

  • Dushenkov S (2003) Trends in phytoremediation of radionuclides. Plant Soil 249:167–175

    Article  Google Scholar 

  • Eapen S, Suseelan KN, Tivarekar S, Kotwal SA, Mitra R (2003) Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor. Environ Res 91(2):127–33

    Article  Google Scholar 

  • Ebbs SD, Lasat MM, Brady DJ, Cornish J, Gordon R, Kochian LV (1997) Phytoextraction of cadmium and zinc from a contaminated soil. J Environ Qual 26:1424–1430

    Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: Implications for phytoremediation. J Environ Qual 26:776–781

    Google Scholar 

  • Ebbs SD, Kochian LV (1998) Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environ Sci Technol 32(6):802–806

    Article  Google Scholar 

  • Ebbs SD, Brady DJ, Kochian LV (1998) Role of uranium speciation in the uptake and translocation of uranium in plants. J Exp Bot 49(324):1183–1190

    Article  Google Scholar 

  • Entry JA, Rygiewicz PT, Emmingham WH (1993) Accumulation of cesium137 and strontium90 in Ponderosa pine and Monterey pine seedlings. J Environ Qual 22:742–745

    Google Scholar 

  • Entry JA, Watrud LS, Manasse RS, Vance NC (1997) Phytoremediation and reclamation of soils contaminated with radionuclides. In: Kruger EL, Anderson TA, Coats, JR (eds) Phytoremediation of Soil and Water Contaminants, ACS Symposium Series No. 664. American Chemical Society, Washington, DC

    Google Scholar 

  • Evans KM, Gatehouse JA, Lindsay WP, Shi J, Tommey AM, Robinson NJ (1992) Expression of pea metallothionin like gene Ps MTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulators: Implications of Ps MTA function. Plant Mol Biol 20:1019–1028

    Article  Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y, Matsumuto H (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol 122:657–666

    Article  Google Scholar 

  • Garland TR, Cataldo DA, Wildung RE (1987) Factors affecting uptake and distribution of plutonium in barley and soybean plants. In: Vaughan BE (ed) Pacific Northwest laboratory Annual Report for 1974 to the US atomic energy commission. Division of Biomedical and Environmental Sciences. Part 2. Ecological Sciences, BNWL-1950 PT-2 UC-48

    Google Scholar 

  • Hasegawa I, Terada E, Sunair M, Wakita H, Shinmachi F, Noguchi A, Nakajima M, Yazaki J (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionin (CUPI). Plant Soil 106:277–281

    Article  Google Scholar 

  • Hse W (1996) Metals soil pollution and vegetative remediation by using poplar trees at two heavy metal contaminated sites. MS Thesis. Univ Iowa, Iowa City, USA

    Google Scholar 

  • Huang JWW, Chen JJ, Berti WR, Cunningham SD (1997) Phytoremediation of lead contaminated soils: Role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    Article  Google Scholar 

  • Huang JW, Blaylock MJ, Kapulnik Y, Ensley BD (1998) Phytoremediation of uranium contaminated soils: Role of organic acids in triggering uranium hyperaccumulation in plants. Environ Sci Technol 32(13):2004–2008

    Article  Google Scholar 

  • IAEA (1981) Tritium in some typical ecosystems. Technical Reports Series no. 207, Vienna

    Google Scholar 

  • IDAHO Department of Health and Welfare (1998) Proposal plan for waste area group 9. Argonne National Laboratory-West, IDAHO National Engineering and Environmental Lab

    Google Scholar 

  • Jayaraman AP, Prabhakar S (1982) The water hyacinth uptake of Cs and Sr and its decontamination potential as an approach to the zero release concept. In: Proc. nternational Symp of Migration in the Terrestrial environment of long lived radionuclides from the nuclear fuel cycle. Knoxville. T.N. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Kumar PBAN, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: A novel strategy for the removal of toxic metals from environment using plants. Biotechnol 13:1232–1238

    Google Scholar 

  • Lasat MM, Fuhrmann M, Ebbs SD, Cornish JE, Kochain LV (1998) Phytoremediation of a radiocesium-contaminated soil: Evaluation of Cesium-137 bioaccumulation in the shoots of three plant species. J Environ Qual 27(1):165–169

    Google Scholar 

  • Lasat MM, Norvell WA, Kochian LV (1997) Potential for phytoextraction of SU137Cs from a contaminated soil. Plant, Soil 195(1):99–106

    Article  Google Scholar 

  • Langmuir D (1978) Uranium solution mineral equilibria at low temperature with applications to sedimentary ore deposits. Geochimica Et Cosmochimica Acta 42:547–560

    Article  Google Scholar 

  • Lin Z-Q, Souza MDe, Pickering LJ, Terry N (2002) Evaluation of the macroalga, muskgrass for the phytoremediation of selenium contaminated agricultural drainage water by microcosms. J Environ Qual 31:2104–2110

    Google Scholar 

  • Ma LQ, Komar KMM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature (London) 409:579

    Article  Google Scholar 

  • Meagher RB, Rugh CL, Kandasamy MK, Gragson G, Wang NJ (2000) Engineered phytoremediation of mercury pollution in soil and waters using bacterial genes. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water, Leurs Boca Raton, Florida, pp 201–221

    Google Scholar 

  • Melo JS, D’Souza SF (2003) Removal of chromium by mucilaginous seeds of Ocimum basilicum. Bioresourse Technol 92(2):151–155

    Article  Google Scholar 

  • Minguzzi C, Vergano O (1948) Il continuto di nichel nelle ceneri di Alyssum bertoloniiDesv. Att Soc Toscana Sci Nat Mem Serie 55:49–77

    Google Scholar 

  • Negri CM, Hinchman RR (2000) The use of plants for the treatment of radionuclides. an: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment, Chapter 8, 2000, Wiley-Interscience, New York

    Google Scholar 

  • Norwell WA (1984) Comparison of chelating agents as extractants for metals in diverse soil materials. Soil Sci Soc Am J 48:1285–1292

    Google Scholar 

  • Norwell WA (1991) Reactions of metal chelates in soils and nutrient solution. In: Mortvedt JJ (ed) Micronutrients in agriculture, Soil Sci. Soc. of America. Madison. Wl, pp 187–227

    Google Scholar 

  • Noshkin VE (1972) Ecological aspects of plutonium dissemination in aquatic environments. Health Phys 22:537–549

    Google Scholar 

  • Pan A, Yang M, Tie F, Li L, Chen Z, Ru B (1994) Expression of mouse metallothionin-1 gene confers cadmium resistance in transgenic tobacco plants. Plant Mol Biol 24:341–351

    Article  Google Scholar 

  • Rascio N (1977) Metal accumulation by some plants growing in zinc mine deposits. Oikos 29:250–253

    Article  Google Scholar 

  • Raskin I (1996) Plant genetic engineering may help with environmental cleanup. In: Proc. of the National Academy of Sciences of the United States of America, pp 3164–3166

    Google Scholar 

  • Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  Google Scholar 

  • Sar P, D’Souza SF (2001) Biosorptive uranium uptake by a Pseudomonas strain characterization and equilibration studies. J Chem Tech Biotech 76:1286–1294

    Article  Google Scholar 

  • Sar P, D’Souza SF (2002) Biosorption of thorium (VI) by a Pseudomonas strain. Biotech Letters 24:239–243

    Article  Google Scholar 

  • Severne BC, Brooks RR (1972) A nickel accumulating plant from Western Australia. Planta 103:91–94

    Article  Google Scholar 

  • Singh S, Sinha S, Saxena R, Pandey K, Bhatt K (2004) Translocation of metals and its effects in the tomato plants grown on various amendments of tannery waste: evidence for involvement of antioxidants. Chemosphere 57(2):91–99

    Article  Google Scholar 

  • Sinha S, Saxena R, Singh S (2002) Comparative studies on accumulation of Cr from metal solution and tannery effluent under repeated metal exposure by aquatic plants: Its toxic effects. Environ Monito Assess 80(1):17–31

    Article  Google Scholar 

  • Suresh B, Ravishankar (2004) Phytoremediation-a novel and promising approach to environmental clean up. Critical Rev Biotechnol 24(2):1–28

    Google Scholar 

  • Wallace A, Romney EM (1972) Radioecology and ecophysiology of desert plants at the Nevada test site. Environmental Radiation Division. Los Angeles Soil Science and Agricultural Engineering. Univ. California, Riversida TID-25954

    Google Scholar 

  • Wild H (1974) Indigenous plants and chromium in Rhodesia. Kirkia 9:233–241

    Google Scholar 

  • Zehnder HJ (1995) Uptake and transport of radioactive cesium and strontium into grapevines after leaf contamination. Radiat Phys Chem 46(1):61–69

    Article  Google Scholar 

  • Zhu Y, Pilon-Smits Eah, Jouanin L, Terry N (1999a) Overexpression of glutathionesynthetase in Brassica juncea enhances cadmium tolerance and accumulation. Plant Physiol 119:73–79

    Article  Google Scholar 

  • Zhu Y, Pilon-Smits Eah, Tarun A, Weber SU, Jouanin L, Terry N (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing ?-glutamylcysteine synthetase. Plant Physiol 121:1169–1177

    Article  Google Scholar 

  • Zhu YG, Shaw G (2000) Soil contamination with radionuclides and potential remediation. Chemosphere 41:121–128

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eapen, S., Singh, S., D’Souza, S. (2007). Phytoremediation of Metals and Radionuclides. In: Singh, S.N., Tripathi, R.D. (eds) Environmental Bioremediation Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34793-4_8

Download citation

Publish with us

Policies and ethics