Skip to main content

Environmental Applications of Fungal and Plant Systems: Decolourisation of Textile Wastewater and Related Dyestuffs

  • Chapter
Environmental Bioremediation Technologies

7. Conclusion

Wastewater treatment plants, such as activated sludge and methanogenic reactors, are not the natural habitat of WRF, since these organisms prefer solid substrates and well-aerated environments. The fact, that constructed wetlands (e.g. sub-surface flow systems with rooted emergent macrophytes), are transitional environments, i.e. are intermediate between terrestrial and aquatic ecosystems, can be an advantage in the treatment of polluted effluents. The wetlands system treats wastewater by physical, chemical and biotic processes, in a close association of appropriated plants, microorganisms, macro-organisms and substrates. Macrophytes enhance physical filtration, prevent clogging in vertical flow systems, mediate oxygen transfer to the rhizosphere and favour microorganism colonisation (Brix et al. 1996; Brix 1997). In sub-surface systems, there is an oxygen gradient, with high partial pressures near the plant roots, to be replaced progressively by anaerobic and anoxic environments. The mixture of aerobic, anoxic and anaerobic zones stimulates different microbial communities that can degrade complex organic substances (such as azo dyes) almost to mineralisation. The extent of dyes biodegradation must be evaluated, since the formation of intermediate compounds can enhance toxicity (Sweeney et al. 1994). The use of constructed wetlands is a low cost technique, with low maintenance needs (Schwitzguébel et al. 2002; Susarla et al. 2002). It is able to tolerate high fluctuations in flow, temperature (Winthrop et al. 2002) and the composition and/or concentration of pollutants in wastewater. Finally, it is likely to find widespread acceptance with the public for its obvious technological and aesthetic qualities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abadulla E, Tzanov T, Costa S, Robra KH, Cavaco-Paulo A, Gubitz GM (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsute. Appl Environ Microbiol 66:3357–3362

    Google Scholar 

  • Adler E (1977). Lignin chemistry-past, present and future. Wood Sci Technol 11:169–218

    Google Scholar 

  • Bauer CR, Kellog CH, Bridgham SD, Lamberti GA (2003) Mycorrhizal colonisation across hydrologic gradients in restored and reference freshwater wetlands. Wetlands 23:961–968

    Google Scholar 

  • Baughman GL, Perkins WS (2002) Treatment of textile effluents in constructed wetlands: a case study. AATCC Review 2(3):24–25

    Google Scholar 

  • Beck-Nielsen D, Madsen TV (2001) Occurrence of vesicular-arbustal mycorrhiza in aquatic macrophytes from lakes and streams. Aquatic Bot 71:141–148

    Google Scholar 

  • Beinert H (2002) Bioinorganic chemistry: a new field or discipline? words, meanings, and reality. J Biol Chem 277:37967–37972

    Google Scholar 

  • Bending GD, Read DJ (1997) Effects of the soluble polyphenol tannic acid on the activities of ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28:1595–1602

    Google Scholar 

  • Bertrand MG (1894) Sur le latex de l’arbe laque. CR Acad Sci (Paris) 118: 1215–1218

    Google Scholar 

  • Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C (2002) Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry 41:7325–7333

    Google Scholar 

  • Blanquez P, Casas N, Font X, Gabarrell X, Sarra M, Caminal G, Vicent T (2004) Mechanism of textile metal dye biotransformation by Trametes versicolor. Water Res 38:2166–2172

    Google Scholar 

  • Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates: an expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102

    Google Scholar 

  • Breen A, Singleton FL (1999) Fungi in lignocellulose breakdown and biopulping. Curr Opin Biotechnol 10:252–258

    Google Scholar 

  • Brix H (1997) Do macrophytes play a role in constructed treatment wetlands? Water Sci Technol 35:11–17

    Google Scholar 

  • Brix H, Sorrell BK, Schierup HH (1996) Gas fluxes achived by in situ convective flow in Phragmites australis. Aquatic Bot 54:151–163

    Google Scholar 

  • Burke RM, Cairney JWG (2002) Laccases and other polyphenol oxidases in ecto-and ericoid mycorrhizal fungi. Mycorrhiza 12:105–116

    Google Scholar 

  • Campos R, Kandelbauer A, Robra KH, Cavaco-Paulo A, Gubitz GM (2001) Indigo degradation with purified laccases from Trametes hirsute and Sclerotium rolfsii. J Biotechnol 89:131–139

    Google Scholar 

  • Chander M, Arora DS, Bath HK (2004) Biodecolourisation of some industrial dyes by white-rot fungi. J Ind Microbiol Biotechnol 31:94–97

    Google Scholar 

  • Chivukula M, Renganathan V (1995) Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl Environ Microbiol 61:4374–4377

    Google Scholar 

  • Chivukula M, Spadaro JT, Renganathan V (1995) Lignin peroxidase-catalyzed oxidation of sulfonated azo dyes generates novel sulfophenyl hydroperoxides. Biochemistry 34:7765–7772

    Google Scholar 

  • Correia M, Stephenson T, Judd SJ (1995) Characteristics of textile wastewaters-a review. Environ Technol 15:917–929

    Google Scholar 

  • Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1114–1118

    Google Scholar 

  • Das JR, Bhat SG, Gowda LR (1997) Purification and characterization of a polyphenol oxidase from the kew cultivar of Indian pineapple fruit. J Agric Food Chem 45:2031–2035

    Google Scholar 

  • Davies TH, Cottingham PD (1994) The use of constructed wetlands for treating industrial effluent (textile dyes). Water Sci Technol 29:227–232

    Google Scholar 

  • del Val C, Guralchuk Z, Campos E, Azcón-Aguillar C, Barea JM (2000) Biodiversity of arbuscular mycorrhizal fungi in heavy metal contamined soils and its implications for bioremediation. In: Intercost Workshop on Bioremediation. Sorrento, Italy, pp 45–47

    Google Scholar 

  • Diamantidis G, Effosse A, Potier P, Bally R (2000) Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol Biochem 32:919–927

    Google Scholar 

  • Dias AA, Bezerra RM, Pereira AN (2004) Activity and elution profile of laccase during biological decolorization and dephenolization of olive mill wastewater. Bioresource Technol 92:7–13

    Google Scholar 

  • Dias AA, Bezerra RM, Lemos PM, Pereira AN (2003) In vivo and laccase-catalysed decolourization of xenobiotic azo dyes by a basidiomycetous fungus: characterization of its ligninolytic system. World J Microbiol Biotechnol 19:969–975

    Google Scholar 

  • Dias SM (2000) Nitroaromatic compounds removal in a vertical flow reed bed case study: industrial wastewater treatment. Intercost Workshop on Bioremediation. Sorrento, Italy, pp 119–120

    Google Scholar 

  • Dönmez G (2002) Bioaccumulation of the reactive textile dyes by Candida tropicalis growing in molasses medium. Enzyme Microb Technol 30:363–366

    Google Scholar 

  • Douglas CJ (1996) Phenylpropanoid metabolism and lignin biosynthesis: from weeds to trees. Trends Plant Sci 1:171–178

    Google Scholar 

  • Ducros V, Brzozowski AM, Wilson KS, Brown SH, Østergaard P, Schneider P, Yaver DS, Pedersen AH, Davies GJ (1998) Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 Å resolution. Nat Struct Biol 5:310–316

    Google Scholar 

  • Eggert C, Temp U, Eriksson K-EL (1997) Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett 407:89–92

    Google Scholar 

  • Eggert C, Temp U, Dean JF, Eriksson KE (1996) A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett 391:144–148

    Google Scholar 

  • Farmer VC, Henderson MEK, Russell JD (1960) Aromatic-alcohol-oxidase activity in the growth medium of Polystictus versicolor. Biochem J 74:257–262

    Google Scholar 

  • Faure D, Bouillant M-L, Bally R (1995) Comparative study of substrates and inhibitors of Azospirillum lipoferum and Pyricularia oryzae laccases. Appl Environ Microbiol 61:1144–1146

    Google Scholar 

  • Field JA, de Jong E, Feijoo-Costa G, de Bont JAM (1993) Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends Biotechnol 11:44–49

    Google Scholar 

  • Font X, Caminal G, Gabarrel X, Romero S, Vicent MT (2003) Black liquor detoxification by laccase of Trametes versicolor pellets. J Chem Tech Biotechnol 78:548–554

    Google Scholar 

  • Fu Y, Viraraghavan T (2001) Fungal decolorization of dye wastewaters: a review. Bioresource Technol 79:251–262

    Google Scholar 

  • Galeno GD, Agosin ET (1990) Screening of white-rot fungi for efficient decolourization of bleach pulp effluents. Biotechnol Lett 12:869–872

    Google Scholar 

  • Gianfreda L, Xu F, Bollag J-M (1999) Laccases: a useful group of oxidoreductive enzymes. Bioremediation J 3:1–25

    Google Scholar 

  • Gill PK, Arora DS, Chander M (2002) Biodecolourization of azo and triphenylmethane dyes by Dichomitus squalens and Phlebia spp. J Ind Microbiol Biotechnol 28:201–203

    Google Scholar 

  • Givaudan A, Effosse A, Faure D, Potier P, Bouillant ML, Bally R (1993) Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for laccase activity in non-motile strains of Azospirillum lipoferum. FEMS Microbiol Lett 108:205–210

    Google Scholar 

  • Glenn JK, Akileswaran L, Gold MH (1986) Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 251:688–696

    Google Scholar 

  • Glenn JK, Morgan MA, Mayfield MB, Kuwahara M, Gold MH (1983) An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun 114:1077–1083

    Google Scholar 

  • Gramss G, Gunther Th, Fritsche W (1998) Spot tests for oxidative enzymes in ectomycorrhizal, wood-and litter-decaying fungi. Mycol Res 102:67–72

    Google Scholar 

  • Gramss G, Voigt K, Kirsche B (2000) Oxidoreductases enzymes liberated by plant roots and their effects on soil humic material. Chemosphere 38:1481–1494

    Google Scholar 

  • Gunther H, Perner B, Gramss G (1998) Activities of phenol oxidizing enzymes of ectomycorrhizal fungi in axenic culture and in symbiosis with Scots pine (Pinus sylvestris L.). J Basic Microb 38:197–206

    Google Scholar 

  • Hakulinen N, Kiiskinen LL, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J (2002) Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat Struct Biol 9:601–605

    Google Scholar 

  • Jarosz-Wilkolazka A, Kochmanska-Rdest J, Malarczyk E, Wardas W, Leonowicz A (2002) Fungi and their ability to decolourize azo and anthraquinonic dyes. Enzyme Microb Technol 30:566–572

    Google Scholar 

  • Karam J, Nicell JA (1997) Potential applications of enzymes in waste treatment. J Chem Tech Biotechnol 69:141–153

    Google Scholar 

  • Keharia H, Madamwar D (2002) Transformation of textile dyes by white-rot fungus Trametes versicolor. Appl Biochem Biotechnol 102-103:99–108

    Google Scholar 

  • Keilin D, Mann T (1939) Laccase, a blue copper-protein oxidase from the latex of Rhus succedanea. Nature 143:23–24

    Google Scholar 

  • Kersten PJ, Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol 169:2195–2201

    Google Scholar 

  • Knapp JS, Newby PS (1995) The microbiological decolorization of an industry effluent containing a diazo-linked chromophore. Water Res 29:1807–1809

    Google Scholar 

  • Kumar SVS, Phale PS, Durani S, Wangikar PP (2003) Combined sequence and structure analysis of the fungal laccase family. Biotechnol Bioeng 83:386–394

    Google Scholar 

  • Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete-chrysosporium. FEBS Lett 169:247–250

    Google Scholar 

  • Langergrabe G (2000) Application of constructed wetlands for wastewater treatment. In: Intercost Workshop on Bioremediation. Sorrento, Italy, pp 115–118

    Google Scholar 

  • Lee SK, George SD, Antholine WE, Hedman B, Hodgson KO, Solomon EI (2002) Nature of the intermediate formed in the reduction of O2 to H2O at the trinuclear copper cluster active site in native laccase. J Am Chem Soc 124:6180–6193

    Google Scholar 

  • Leonowicz A, Grzywnowicz K (1981) Quantitative estimation of laccase forms in some white-rot fungi using syringaldazine as a substrate. Enzyme Microb Technol 3:55–58

    Google Scholar 

  • Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtas-Wasilewska M, Cho N-S, Hofrichter M, Rogalski J (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27:175–185

    Google Scholar 

  • Longhinotti E, Pozza F, Furlan L, Sanchez MNM, Klug M, Laranjeira MCM, Favere VT (1998) Adsorption of anionic dyes on the biopolymer chitin. J Braz Chem Soc 9:435–440

    Google Scholar 

  • Low KS, Lee CK, Tan KK (1995) Biosorption of basic-dyes by water hyacinth roots. Bioresource Technol 52:79–83

    Google Scholar 

  • Malliga P, Uma L, Subramanian G (1996) Lignolytic activity of the cyanobacterium Anabaena azollae ML2 and the value of coir waste as a carrier for BGA biofertilizer. Microbios 86:175–183

    Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565

    Google Scholar 

  • Moldes D, Lorenzo M, Sanroman MA (2004) Different proportions of laccase isoenzymes produced by submerged cultures of Trametes versicolor grown on lignocellulosic wastes. Biotechnol Lett 26:327–30

    Google Scholar 

  • Nagai M, Sato T, Watanabe H, Saito K, Kawata M, Enei H (2002) Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes. Appl Microbiol Biotechnol 60:327–335

    Google Scholar 

  • Niku-Paavola ML, Raaska L, Itavaara M (1990) Detection of white-rot fungi by a nontoxic stain. Mycol Res 94:27–31

    Google Scholar 

  • Nyanhongo GS, Gomes J, Gubitz GM, Zvauya R, Read J, Steiner W (2002) Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta. Water Res 36:1449–1456

    Google Scholar 

  • Pagga V, Taeger K (1994) Development of a method for adsorption of dyestuffs on activated sludge. Water Res 28:1051–1057

    Google Scholar 

  • Palmer AE, Lee SK, Solomon EI (2001) Decay of the peroxide intermediate in laccase: reductive cleavage of the O-O bond. J Am Chem Soc 121:7138–7149

    Google Scholar 

  • Paul EA, Clark FE (1989) Soil Microbiology and Biochemistry. Academic Press, New York

    Google Scholar 

  • Pérez J, Munoz-Dorado J, de la Rubia T, Martí;nez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    Google Scholar 

  • Perkins WS, Baughman GL (2002) Color in textile wastewater: influence of dye dispersing agents. AATCC Review 2(8):65–67

    Google Scholar 

  • Pierce J (1994) Colour in textile effluents — the origins of the problem. J Soc Dyers Colourists 110:131–133

    Google Scholar 

  • Piontek K, Antorini M, Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers. J Biol Chem 277:37663–37669

    Google Scholar 

  • Pointing SB, Bucher VVC, Vrijmoed LLP (2000) Dye decolorization by sub-tropical basidiomycetous fungi and the effect of metals on decolorizing ability. World J Microbiol Biotechnol 16:199–205

    Google Scholar 

  • Prasad MNV, Freitas HMD (2003) Metal hyperaccumulation in plants-biodiversity prospecting for phytoremediation technology. Electronic J Biotechnol 6:285–321

    Google Scholar 

  • Ramalho PA, Cardoso MH, Cavaco-Paulo A, Ramalho MT (2004) Characterization of azo reduction activity in a novel ascomycete yeast strain. Appl Environ Microbiol 70:2279–2288

    Google Scholar 

  • Reddy CA (1995) The potential for white-rot fungi in the treatment of pollutants. Curr Opin Biotechnol 6:320–328

    Google Scholar 

  • Reid ID (1995) Biodegradation of lignin. Can J Bot 73(suppl.):S1011–S1018

    Google Scholar 

  • Rodrí;guez E, Pickard MA, Vazquez-Duhalt R (1999) Industrial dye decolorization by laccases from ligninolytic fungi. Curr Microbiol 38:27–32

    Google Scholar 

  • Saloheimo M, Niku-Paavola ML (1991) Heterologous production of a ligninolytic enzyme: expression of the Phlebia radiate laccase gene in Trichoderma reesei. Bio/Technology 9:987–990

    Google Scholar 

  • Schneider IAH, Rubio J (1999) Sorption of heavy metal ions by the non living biomass of freshwater macrophytes. Environ Sci Technol 33:2213–2217

    Google Scholar 

  • Schwitzguébel JP, Aubert S, Grosse W, Laturnus F (2002) Sulphonated aromatic pollutants-Limits of microbial degradability and potential of phytoremediation. Environ Sci Pollut Res 9:62–72

    Google Scholar 

  • Shaul GM, Holdsworth TJ, Dempsey CR, Dostal KA (1991) Fate of water-soluble azo dyes in the activated-sludge process. Chemosphere 22:107–119

    Google Scholar 

  • Shimada M, Higuchi T (1983) Biochemical aspects of the secondary metabolism of xenobiotic lignin and veratryl alcohol biosynthesis in Phanerochaete chrysosporium. In: Higuchi T, Chang H-M, Kirk TK (eds) Proc of Recent Advances in Lignin Biodegradation Research, Tokyo Univ. Publ., pp. 195–208

    Google Scholar 

  • Soares GMB, Amorim MTP, Hrdina R, Costa-Ferreira M (2002) Studies on the biotransformation of novel disazo dyes by laccase. Process Biochem 37:581–587

    Google Scholar 

  • Sterjiades R, Dean JFD, Eriksson KEL (1992) Laccase from sycamore maple (Acer pseudoplatanus) polymerizes monolignols. Plant Physiol 99:1162–1168

    Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Engineering 18:647–658

    Google Scholar 

  • Suzuki T, Endo K, Ito M, Tsujibo H, Miyamoto K, Inamori Y (2003) A thermostable laccase from Streptomyces lavendulae REN-7: purification, characterization, nucleotide sequence, and expression. Biosci Biotechnol Biochem 67:2167–2175

    Google Scholar 

  • Sweeney EA, Chipman JK, Forsythe SJ (1994) Evidence for direct-acting oxidative genotoxicity by reduction products of azo dyes. Environ Health Persp 102:119–122

    Google Scholar 

  • Tekere M, Mswaka AY, Zvauya R, Read JS (2001) Growth, dye degradation and ligninolytic activity studies on Zimbabwean white rot fungi. Enzyme Microb Technol 28:420–426

    Google Scholar 

  • ten Have R, Teunissen PJM (2001) Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem Rev 101:3397–3413

    Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Google Scholar 

  • Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 221:661–663

    Google Scholar 

  • Tuor U, Winterhalter K, Fiechter A (1995) Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. J Biotechnol 41:1–17

    Google Scholar 

  • Waranusantigul P, Pokethitiyook P, Kruatrachue M, Upatham ES (2003) Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza). Environ Pollution 125:385–392

    Google Scholar 

  • Wariishi H, Valli K, Gold MH (1992) Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: kinetic mechanism and role of chelators. J Biol Chem 267:23688–23695

    Google Scholar 

  • Weber EJ, Stickney VC (1993) Hydrolysis kinetics of reactive blue 19-vinyl sulfone. Water Res 27:63–67

    Google Scholar 

  • Wesenberg D, Buchon F, Agathos SN (2002) Degradation of dye-containing textile effluent by the agaric white-rot fungus Clitocybula dusenii. Biotechnol Lett 24:989–993

    Google Scholar 

  • Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22: 161–187

    Google Scholar 

  • Winthrop CA, Hook PB, Biederman JA, Stein OR (2002) Temperature and wetland plant species effects on wastewater treatment and root zone oxidation. J Environ Qual 31:1010–1016

    Google Scholar 

  • Xu F, Berka RM, Wahleithner JA, Nelson BA, Shuster JR, Brown SH, Palmer AE, Solomon EI (1998) Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile. Biochem J 334:63–70

    Google Scholar 

  • Yang Q, Yang M, Pritsch K, Yediler A, Hagn A, Schloter M, Kettrup A (2003) Decolorization of synthetic dyes and production of manganese-dependent peroxidase by new fungal isolates. Biotechnol Lett 25:709–713

    Google Scholar 

  • Yoshida H (1883) Chemistry of lacquer (Urushi), part I. J Chem Soc (Tokyo) 43:472–486

    Google Scholar 

  • Youn H-D, Hah YC, Kang S-O (1995) Role of laccase in lignin degradation by whiterot fungi. FEMS Microbiol Lett 132:183–188

    Google Scholar 

  • Zollinger H (1991) Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments. VCH Publishers, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dias, A.A., Sampaio, A., Bezerra, R.M. (2007). Environmental Applications of Fungal and Plant Systems: Decolourisation of Textile Wastewater and Related Dyestuffs. In: Singh, S.N., Tripathi, R.D. (eds) Environmental Bioremediation Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34793-4_19

Download citation

Publish with us

Policies and ethics