Skip to main content

Diversity, Biodegradation and Bioremediation of Polycyclic Aromatic Hydrocarbons

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abremski KE, Hoess RH (1992) Evidence for a second conserved argnine residue in the integrase family of recombination proteins. Protein Eng 5:87–91

    Google Scholar 

  • Akhtar NM, Boyd DR, Thompson MJ, Koreeda M, Gibson DT, Mahadevan V, Jerina DM (1975) Absolute stereochemistry of the dihydroxyanthracene-cis and trans-1,2-diols produced from anthracene by mammals and bacteria. J Chem Soc Perkin Trans 1:2506–2511

    Google Scholar 

  • Aronstein BN, Alexander M (1993) Effect of a non-ionic surfactant added to the soil surface on the biodegradation of aromatic hydrocarbons within the soil. Appl Microbiol Biotechnol 39:386–390

    Google Scholar 

  • Atlas RM, Horowitz A, Krichevsky M, Bej AK (1991) Response of microbial populations to environmental disturbance. Microb Ecol 22:249–256

    Google Scholar 

  • Bååth E, Dí;az-Raviña M, Frostegård Å, Campbell CD (1998) Effect of metal-rich sludge amendments on the soil microbial community. Appl Environ Microbiol 64:283–245

    Google Scholar 

  • Bai G, Brusseau ML, Miller RM (1997) Biosurfactant-enhanced removal of residual hydrocarbon from soil. J Contam Hydrol 25:157–170

    Google Scholar 

  • Barnsely EA (1976) Naphthalene metabolism by pseudomonads: the oxidation of 1,2-dihydroxynaphthalene to 2-hydroxychromene-2-carboxylic acid and formation of 2-hydroxylbenzalpyruvate. Biochem Biophys Res Commun 72:1116–1121

    Google Scholar 

  • Barnsley EA (1975) The induction of the enzymes of naphthalene metabolism in pseudomonads by salicylate and 2-aminobenzoate. J Gen Microbiol 88:193–196

    Google Scholar 

  • Berg DE, Howe MM (1989) Mobile DNA. American Society for Microbiology, Washington D.C.

    Google Scholar 

  • Blumer M (1976) Polycyclic aromatic hydrocarbons in nature. Sci Am 234:35–45

    Google Scholar 

  • Bogan BW, Lahner LM, Sullivan WR, Paterek JR (2003) Degradation of straight-chain aliphatic and high-molecular-weight polycyclic aromatic hydrocarbons by a strain of Mycobacterium austroafricanum. J Appl Microbiol 94:230–239

    Google Scholar 

  • Boldrin B, Tiehm A, Fritzsche C (1993) Degradation of phenanthrene, fluorene, fluoranthene and pyrene by a Mycobacterium species. Appl Environ Microbiol 59:1927–1930

    Google Scholar 

  • Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of highmolecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol 66:1007–1019

    Google Scholar 

  • Bosch R, Garcia-Valdés E, Moore ERB (1999a) Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10. Gene 236:149–157

    Google Scholar 

  • Bosch R, Garcia-Valdés E, Moore ERB (2000) Complete nucleotide sequence and evolutionary significance of a chromosomally encoded naphthalene-degradation lower pathway from Pseudomonas stutzeri AN10. Gene 245:65–74

    Google Scholar 

  • Bosch R, Moore ERB, Gracia-Valdés E, Pieper DH (1999b) Nah W, a novel, inducible salicylate hydroxylase involved in mineralization of naphthalene by Pseudomonas stutzeri AN10. J Bacteriol 181:2315–2322

    Google Scholar 

  • Bosma TNP, Middeldorp PJM, Schraa G, Zehnder AJB (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 31:248–52

    Google Scholar 

  • Braun-Lüllemann A, Hüttermann A, Majcherczyk A (1999) Screening of ectomycorrhizal fungi for degradation of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 53:127–132

    Google Scholar 

  • Caldini G, Cenci G, Manenti R, Morozzi G (1995) The ability of an environmental isolate of Pseudomonas fluorescens to utilize chrysene and other four-ring polynuclear aromatic hydrocarbons. Appl Microbiol Biotechnol 44:225–229

    Google Scholar 

  • Cerniglia CE (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol 30:31–71

    Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 43:156–164

    Google Scholar 

  • Cerniglia CE (1993) Biodegradation of polycyclic aromatic hudrocarbons. Curr Opin Biotechnol 4:331–338

    Google Scholar 

  • Cerniglia CE, Althaus JR, Evans FE, Freeman JP, Mitchum RK, Yang SK (1983) Stereochemistry and evidence for an arene-oxide-NIH shift pathway in the fungal metabolism of naphthalene. Chem Biol Interact 44:119–132

    Google Scholar 

  • Cerniglia CE, Campbell WL, Fu PP, Freeman JP, Evans FE (1990) Stereoselective fungal metabolism of methylated anthracenes. Appl Environ Microbiol 56:661–668

    Google Scholar 

  • Cerniglia CE, Freeman JP, White GL, Heflich RH, Miller DW (1985b) Fungal metabolism and detoxification of the nitropolycyclic aromatic hydrocarbon, 1-nitropyrene. Appl Environ Microbiol 50:649–652

    Google Scholar 

  • Cerniglia CE, Sutherland JB, Crow SA (1992) Fungal metabolism of aromatic hydrocarbons. In: Winkelmann G (ed) Microbial Degradation of Natural Products, VCH Press, Weinheim, pp 193–217

    Google Scholar 

  • Cerniglia CE, White GL, Heflich RH (1985a) Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons. Arch Microbiol 143:105–110

    Google Scholar 

  • Churchill SA, Harper JP, Churchill PF (1999) Isolation and characterization of a Mycobacterium species capable of degrading three-and four-ring aromatic and aliphatic hydrocarbons. Appl Environ Microbiol 65:549–552

    Google Scholar 

  • Davies JI, Evans WC (1964) Oxidative metabolism of naphthalene by soil pseudomonads: the ring-fission mechanism. Biochem J 91:251–261

    Google Scholar 

  • Denome SA, Stanley DC, Olson ES, Young KD (1993) Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. J Bacteriol 175:6890–6901

    Google Scholar 

  • Desai JD, Banat I (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    Google Scholar 

  • Déziel E, Comeau Y, Villemur R (1999) Two-liquid-phase bioreactors for enhanced degradation of hydrophobic/toxic compounds. Biodegradation 10:219–233

    Google Scholar 

  • Déziel E, Paquette G, Villemur R, Lépine F, Bisaillon J-G (1996) Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol 62:1908–1912

    Google Scholar 

  • Dunn, N.W., Gunsalus, I.C. (1973) Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J Bacteriol 114:974–979.

    Google Scholar 

  • Eaton RW (1994) Organization and evolution of naphthalene catabolic pathways: sequence of the DNA encoding 2-hydroxychromene-2-carboxylate isomerase and trans-o-hydroxy benzylidenepyruvate hydratase—addolase from the NAH7 plasmid. J Bacteriol 176:7757–7762

    Google Scholar 

  • Eaton RW, Chapman PJ (1992) Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions. J Bacteriol 174:7542–7554

    Google Scholar 

  • Edwards DA, Luthy RG, Liu Z (1994) Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ Sci Technol 25:127–133

    Google Scholar 

  • Ensley BD, Gibson DT (1983) Naphthalene dioxygenase: purification and properties of a terminal oxygenase component. J Bacteriol 155:505–511

    Google Scholar 

  • Evans WC, Fernley HN, Griffiths E (1965) Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads. Biochem J 95:819–831.

    Google Scholar 

  • Fernley HN, Griffiths E, Evans WC (1964) Oxidative metabolism of phenanthrene and anthracene by soil bacteria: the initial ring fission step. Biochem J 91:15–16

    Google Scholar 

  • Ferris JM, Nold SC, Rersbech NP, Ward DM (1997) Population structure and physiological changes within a hot spring microbial mat community following disturbance. Appl Environ Microbiol 63:1367–1374

    Google Scholar 

  • Field JA, de Jong E, Feijoo Costa G, de Bont JAM (1992) Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl Environ Microbiol 58:2219–2226

    Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN, Jr. (1997) Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons and particles. Science 276:1045–1052

    Google Scholar 

  • Fredrickson JK, Balkwill DL, Drake GR, Romine MF, Ringelberg DB, White DC (1995) Aromatic-degrading Sphingomonas isolates from the deep subsurfaces. Appl Environ Microbiol 61:1917–1922

    Google Scholar 

  • Fredrickson JKJ, Brockman FJ, Workman DJ, Li SW, Stevens TO (1991) Isolation and characterization of a subsurface bacterium capable of growth on toluene, naphthalene and other aromatic compounds. Appl Environ Microbiol 57:796–803

    Google Scholar 

  • Fuenmayor SL, Wild M, Boyes AL, Williams P (1998) A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. J Bacteriol 180:2522–2530

    Google Scholar 

  • Garcia-Valdéz E, Cozar E, Rotger R, Lalucat J, Ursing J (1988) New naphthalene degrading marine Pseudomonas strains. Appl Environ Microbiol 54:2478–2485

    Google Scholar 

  • Gauthier E, Déziel E, Villemur R, Juteau P, Lépine F, Beaudet R (2003) Initial characterization of new bacteria degrading high-molecular weight polycyclic aromatic hydrocarbons isolated from a 2-year enrichment in a two-liquid-phase culture system. J Appl Microbiol 94:301–311

    Google Scholar 

  • Geiselbrecht AG, Hedlund BP, Tichi MA, Stanley JT (1998) Isolation of marine polycyclic aromatic hydrocarbon-degrading Cycloclasticus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of Puget Sound Strains. Appl Environ Microbiol 64:4703–4710

    Google Scholar 

  • Geiselbrecht AG, Herwig RP, Deming JW, Stanley JT (1996) Enumeration and phylogenetic analysis of polycyclic aromatic hydrocarbon-degrading marine bacteria from Puget Sound sediments. Appl Environ Microbiol 62:3344–3349

    Google Scholar 

  • Ghosh DK, Mishra AK (1983) Oxidation of phenanthrene by strain of Micrococcus: evidence of protocatechuate pathway. Curr Microbiol 9:219–224

    Google Scholar 

  • Gibson DT, Subramanian V (1984) Microbial degradation of aromatic hydrocarbon. In: Gibson DT (ed) Microbial Degradation of Organic Compounds, Marcel Dekker, New York, pp 181–252

    Google Scholar 

  • Gibson DT, Roberts RL, Wells MC, Kobal VM (1973) Oxidation of biphenyl by a Beijerinckia species. Biochem Biophys Res Commun 50:211–219

    Google Scholar 

  • Goldman R, Enewold L, Pellizzari E, Beach JB, Bowman ED, Krishnan SS, Shields PG (2001) Smoking increases carcinogenic polycyclic aromatic hydrocarbons in human lung tissue. Cancer Res 61:6367–6371

    Google Scholar 

  • Goyal AK, Zylstra GJ (1996) Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosterone GZ39. Appl Environ Microbiol 62:230–236

    Google Scholar 

  • Grimm AC, Harwood CS (1999) NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J Bacteriol 181:3310–3316

    Google Scholar 

  • Grund AD, Gunsalus IC (1983) Cloning of genes for naphthalene metabolism in Pseudomonas putida. J Bacteriol 156:89–94

    Google Scholar 

  • Guieysse B, Cirne MDTG, Mattiasson B (2001) Microbial degradation of phenanthrene and pyrene in a two-liquid phase-partitioning bioreactor. Appl Microbiol Biotechnol 56:796–802

    Google Scholar 

  • Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243

    Google Scholar 

  • Haemmerli SD, Leisola MSA, Sanglard D, Fiechter A (1986) Oxidation of benzo[a]pyrene by extracellular ligninase of Phanerochaete chrysosporium: veratryl alcohol and stability of ligninase. J Biol Chem 261:6900–6903

    Google Scholar 

  • Hallet B, Sherratt DJ (1997) Transposition and site-specific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements. FEMS Microbiol Rev 21:157–178

    Google Scholar 

  • Hammel, K.E., Kalyanaraman, B., Kirk, T.K. (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261:16948–16952.

    Google Scholar 

  • Harayama S (1997) Polycyclic aromatic hydrocarbon bioremediation design. Curr Opin Biotechnol 8:268–273

    Google Scholar 

  • Harms H, Bosma TNP (1997) Mass transfer limitation of microbial growth and pollutant degradation. J Ind Microbiol Biotechnol 18:97–105

    Google Scholar 

  • Harvey S, Elashvili I, Valdes JJ, Kamely D, Chakrabarty AM (1990) Enhanced removal of Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant. Bio/Technology 8:228–230

    Google Scholar 

  • Hedlund BP, Geiselbrecht AD, Stanley JT (1996) Dioxygenase and phylogenetic diversity among marine PAH-degrading bacteria, Abstract No. Q339. In: Abstracts of the 96th General Meeting of the American Society for Microbiology 1996. American Society for Microbiology, Washington, D.C

    Google Scholar 

  • Hedlund BP, Geiselbrecht AD, Bair TJ, Stanley JT (1999) Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptumonas naphthovorans gen, nov., sp. nov. Appl Environ Microbiol 65:251–259

    Google Scholar 

  • Heitkamp MA, Cerniglia CE (1988) Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl Environ Microbiol 54:1612–1614

    Google Scholar 

  • Heitkamp MA, Franklin W, Cerniglia CE (1988a) Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Appl Environ Microbiol 54:2549–2555

    Google Scholar 

  • Heitkamp MA, Freeman JP, Miller DW, Cerniglia CE (1988b) Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products. Appl Environ Microbiol 54:2556–2565

    Google Scholar 

  • Herbes SE, Schwall LR (1978) Microbial transformation of polycyclic aromatic hydrocarbons in pristine and petroleum-contaminated sediments. Appl Environ Microbiol 35:306–316

    Google Scholar 

  • Herwijnen RV, Springael D, Slot P, Govers HAJ, Parsons JR (2003) Degradation of anthracene by Mycobacterium sp. strain LB 5-1T proceeds via a novel pathway, through o-phthalic acid. Appl Environ Microbiol 69:186–190

    Google Scholar 

  • Holland HL, Khan SH, Richards D, Riemland E (1986) Biotransformation of polycyclic aromatic compounds by fungi. Xenobiotica 16:733–741

    Google Scholar 

  • Houghton JE, Shanley MS (1994) Catabolic potential of pseudomonads: a regulatory prespective. In: Chaudhry RG (ed) Biological Degradation and Bioremediation of Toxic Chemicals, Chapman and Hall, London, pp 11–32

    Google Scholar 

  • Hughes JB, Beckles DM, Chandra SD, Ward CH (1997) Utilization of bioremediation processes for the treatment of PAH contaminated sediments. J Ind Microbiol Biotechnol 18:152–160

    Google Scholar 

  • Iwabuchi T, Harayama S (1998) Biochemical and molecular characterization of 1-hydroxy-2-naphthoate dioxygenase from Nocardioides sp. KP7. J Mol Biol 273:8332–8336

    Google Scholar 

  • Iwabuchi T, Inomata-Yamoguchi Y, Katsuta A, Harayama S (1998) Isolation and characterization of marine Nocardioides capable of growing and degrading phenanthrene at 42°C. J Mar Biotechnol 6:86–90

    Google Scholar 

  • Jerina DM, Selander H, Yagi H, Wells MC, Davey JF, Mahadevan V, Gibson DT (1976) Dihydrodiols from anthracene and phenanthrene. J Am Chem Soc 98:598–5996

    Google Scholar 

  • Kanaly RA, Bartha R (1999) Cometabolic mineralization of benzo[a]pyrene caused by hydrocarbon addition to soil Environ. Toxicol Chem 18:2186–2190

    Google Scholar 

  • Keith LH, Telliard WA (1979) Priority pollutants. I.A perspective view. Environ Sci Technol 13:416–423

    Google Scholar 

  • Kelley I, Cerniglia CE (1995) Degradation of a mixture of high molecular weight polycyclic aromatic hydrocarbons by a Mycobacterium strain PYR-1. J Soil Contam 4:44–91

    Google Scholar 

  • Kelley I, Freeman JP, Cerniglia CE (1991) Identification of metabolites from the degradation of naphthalene by a Mycobacterium sp. Biodegradation 1:283–290

    Google Scholar 

  • Khan AA, Wang R-F, Cao W-W, Doerge DR, Wennerstrom D, Cerniglia CE (2001) Molecular cloning, nucleotide sequences and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67:3577–3585

    Google Scholar 

  • Kiehlmann E, Pinto L, Moore M (1996) The transformation of chrysene to trans-1,2-dihydroxy-1,2-dihydrochrysene by filamentous fungi. Can J Microbiol 42:604–608

    Google Scholar 

  • Kim E, Zylstra GJ (1999) Functional analysis of genes involved in biphenyl, naphthalene, phenanthrene, and m-xylene degradation by Sphingomonas yanoikuyae B1. J Ind Microbiol Biotechnol 23:294–302

    Google Scholar 

  • Kim E, Zylstra GJ (1995) Molecular biochemical characterization of two meta-cleavage dioxygenases involved in biphenyl and m-xylene degradation by Beijerinkia sp. strain B1. J Bacteriol 177:3095–3103

    Google Scholar 

  • Kim S, Kweon OK, Kim Y, Kim CK, Lee KS, Kim YC (1997a) Localization and sequence analysis of the phnH gene encoding 2-hydroxypent-2,4-dienoate hydratase in Pseudomonas sp. strain DJ77. Biochem Biophys Res Commun 238:56–60

    Google Scholar 

  • Kim S, Shin HJ, Kim Y, Kim SJ, Kim YC (1997b) Nucleotide sequence of the Pseudomonas sp. DJ77 phnG gene encoding 2-hydroxymuconic semialdehyde dehydrogenase. Biochem Biophys Res Commun 240:41–45

    Google Scholar 

  • Kiyohara H, Magao K, Momi R (1976) Degradation of phenanthrene through ophthalate by an Aeromonas sp. Agri Biol Chem 40:1075–1082

    Google Scholar 

  • Kotterman MJJ, Vis EH, Field JA (1998) Successive mineralization and detoxification of benzo[a]pyrene by the white rot fungus Bjerkandera sp. strain BOS555 and indigenous microflora. Appl Environ Microbiol 64:2853–2858

    Google Scholar 

  • Kulakov EA, Allen CCR, Lipscomb DA, Larkin MJ (2000) Cloning and characterization of a novel cis-naphthalene dihydrodiol dehydrogenase gene (narB) from Rhodococcus sp. NCMB 12038. FEMS Microbiol Lett 182:327–331

    Google Scholar 

  • Kurkela S, Lehvaslaiho H, Palva ET, Teeri TH (1988) Cloning, nucleotide sequence and characterization of genes encoding naphthalene dioxygenase of Pseudomonas putida strain NCIB 9816. Gene 73:355–362

    Google Scholar 

  • Langworthy DE, Stapleton RD, Sayler GS, Findlay RH (1998) Genotypic and phenotypic responses of a riverine microbial community to polycyclic aromatic hydrocarbon contamination. Appl Environ Microbiol 64:3422–3428

    Google Scholar 

  • Larkin MJ, Allen CCR, Kulakov LA, Lipscomb DA (1999) Purification and characterization of a novel naphthalene dioxygenase from Rhodococcus sp. strain NCIMB 12038. J Bacteriol 181:6200–6204

    Google Scholar 

  • Launen L, Pinto L, Weibe C, Kiehlmann E, Moore M (1995) The oxidation of pyrene and benzo[a]pyrene by nonbasidiomycete soil fungi.Can J Microbiol 41:477–488

    Google Scholar 

  • Laurie AD, Lloyd-Jones G (1999a) The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism J Bacteriol 181:531–540

    Google Scholar 

  • Laurie AD, Lloyd-Jones G (1999b) Conserved and hybrid meta-cleavage operons from Burkholderia RP007. Biochem Biophys Res Commun 262:308–314

    Google Scholar 

  • Macleod CT, Daugulis AJ (2003) Biodegradation of polycyclic aromatic hydrocarbons in a two-phase partitioning bioreactor in the presence of a bioavailable solvent. Appl Microbiol Biotechnol 62:291–296

    Google Scholar 

  • MacNaughton SJ, Stephen JR, Venosa AD, Davis DA, Chang Y-J, White DC (1999) Microbial population changes during bioremediation of an experimental oil spill. Appl Environ Microbiol 65:3566–3574

    Google Scholar 

  • Marcoux J, Déziel E, Villemur R, Lépine F, Bisaillon J-G, Beaudet R (2000) Optimization of high-molecular-weight polycyclic aromatic hydrocarbons’ degradation in a two-liquid-phase bioreactor. J Appl Microbiol 88:655–662

    Google Scholar 

  • Meulenberg R, Rijnaarts HHM, Doddema HJ, Field JA (1997) Partially oxidized polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability. FEMS Microbiol Lett 152:45–49

    Google Scholar 

  • Mihelcic JR, Lueking DR, Mitzell RJ, Stapleton JM (1993) Bioavailability of sorbedand separate-phase chemicals. Biodegradation 4:141–153

    Google Scholar 

  • Millero FJ, Sohn ML (1991) Chemical Oceanography. CRC Press, Boca Raton, FL, pp 531

    Google Scholar 

  • Moody JD, Freeman JP, Doerge DR, Cerniglika CE (2001) Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67:1476–1483

    Google Scholar 

  • Moody JD, Freeman JP, Fu PP, Cerniglia CE (2004) Degradation of benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 70:340–345

    Google Scholar 

  • Mueller JG, Cerniglia CE, Pritchard PH (1996) Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons. In: Crawford RL, Crawford DL (eds) Bioremediation: Principles and Applications, Cambridge University Press, U.K., pp 1215–1294

    Google Scholar 

  • Mueller JG, Chapman PJ, Blattmann BO, Pritchard PH (1990) Isolation and characterization of a fluoranthene utilizing strain of Pseudomonas paucimobilis. Appl Environ Microbiol 56:1079–1086

    Google Scholar 

  • Mueller JG, Devereux R, Santavy DL, Lantz SE, Willis SG, Pritchard PH (1997) Phylogenetic and physiological comparisons of PAH-degrading bacteria from geographically diverse soils. Antonie van Leeuwenhoek 71:329–343

    Google Scholar 

  • Mueller JG, Lantz SE, Devereux R, Berg JD, Pritchard PH (1994) Studies on the microbial ecology of polycyclic aromatic hydrocarbon biodegradation. In: Hinchee RE, Seprini L, Ong SK (eds) Bioremediation of Chlorinated and PAH compounds, Lewis publishers, Boca Raton, Florida, pp 218–230

    Google Scholar 

  • Narro ML, Cerniglia CE, Van Baalen C, Gibson DT (1992b) Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum, strain PR-6. Appl Environ Microbiol 58:1351–1359

    Google Scholar 

  • Narro ML, Cerniglia CE, Van Baalen C, Gibson DT (1992a) Evidence of NIH shift in naphthalene oxidation by the marine cyanobacterium, Oscillatoria species strain JCM. Appl Environ Microbiol 58:1360–1363

    Google Scholar 

  • National Research Council. (1983) Polycyclic aromatic hydrocarbons: Evaluation of Sources and Effects. National Academy Press, Washington, D.C.

    Google Scholar 

  • Nikolova P, Ward OP (1993) Whole cell biocatalysis in nonconventional media. J Ind Microbiol 12:76–86

    Google Scholar 

  • Oberbremer A, Müller-Hurtig R, Wagner F (1990) Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor. Appl Microbiol Biotechnol 32:485–489

    Google Scholar 

  • Øvreås Jensen LS, Daae FL Torsvik V (1998) Microbial community changes in perturbed agricultural soil investigated by molecular and physiological approaches. Appl Environ Microbiol 64:2739–2742

    Google Scholar 

  • Patel TR, Gibson DT (1974) Purification and properties of (+)-cis-napthalene dihydrodiol dehydrogenase of Pseudomonas putida. J Bacteriol 19:879–888

    Google Scholar 

  • Patnaik P (1992) Hydrocarbon, aromatic. In: A Comprehensive Guide to the Hazardous Properties of Chemical Substances, Van Nostrand Reinhold, New York, pp425–445

    Google Scholar 

  • Pignatello JJ, Xing B (1996) Mechanism of slow sorption of organic chemicals to natural particles. Environ Sci Technol 25:372–379

    Google Scholar 

  • Platt A, Shingler V, Taylor SC, Williams PA (1995) The 4-hydroxy-2-oxovalerate aldolase and acetaldehyde dehydrogenase (acylating) encoded by the nahM and nahO genes of the naphthalene catabolic plasmid pWW60-22 provide further evidence of conservation of meta-cleavage pathway gene sequences. Microbiology 141:2223–2233

    Google Scholar 

  • Pothuluri JV, Freeman JP, Evans FE, Cerniglia CE (1992a) Fungal metabolism of acenaphthene by Cunninghamella elogans. Appl Environ Microbiol 58:3654–3659

    Google Scholar 

  • Pothuluri JV, Heflich RH, Fu PP, Cerniglia CE (1992b) Fungal metabolism and detoxification of fluoranthene. Appl Environ Microbiol 58:937–941

    Google Scholar 

  • Pothuluri JV, Selby A, Evans FE, Freeman JP, Cerniglia CE (1994) Transformation of chrysene and other polycyclic aromatic hydrocarbon mixtures by the fungus Cunnighamella elegans. Can J Bot 73:1025–1033

    Google Scholar 

  • Prabhu Y, Phale PS (2003) Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl Microbiol Biotechnol 61:342–351

    Google Scholar 

  • Rafii F, Butler WR, Cerniglia CE (1992) Differentiation of a rapidly growing, scotochromogenic, polycyclic aromatic hydrocarbon-metabolizing strain of Mycobacterium sp. from other known Mycobacterium species. Arch Microbiol 157:512–520

    Google Scholar 

  • Rehmann K, Steinberg CEW, Kettrup AA (1996) Branched metabolic pathway for phenanthrene degradation in a pyrene-degrading bacterium. Polycycl Aromat Comp 11:125–130

    Google Scholar 

  • Romine MF, Stillwell LC, Wong K-K, Thurston SJ, Sisk EC, Sensen C, Gaasterland T, Fredrickson JK, Saffer JD (1999) Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol 181:1585–1602

    Google Scholar 

  • Rooney-Varga JN, Anderson RT, Fraga JL, Ringelberg D, Lovley DR (1999) Microbial community associated with anaerobic benzene degradation in petroleumcontaminated aquifer. Appl Environ Microbiol 65:3056–3063

    Google Scholar 

  • Rosenberg E, Ron EZ (1996) Bioremediation of petroleum contamination. In: Crawford RL, Crawford DL (eds) Bioremediation: Principles and Applications, Cambridge University Press, UK, pp 100–124

    Google Scholar 

  • Sack U, Heinze J, Deck J, Cerniglia CE, Martens R, Zadrazil F, Fritsche W (1997) Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Appl Environ Microbiol 63:3919–3925

    Google Scholar 

  • Saito A, Iwabuchi T, Harayama S (2000) A novel phenanthrene dioxygenase from Nocardioides sp. KP7: expression in Escherichia coli. J Bacteriol 182:2134–2141

    Google Scholar 

  • Samanta SK, Chakraborti AK, Jain RK (1999) Degradation of phenanthrene by different bacteria:evidence for novel transformation sequences involving the formation of 1-naphthol. Appl Microbiol Biotechnol 53:98–107

    Google Scholar 

  • Samanta SK, Rani M, Jain RK (1998) Segregational and structural instability of a recombinant plasmid carrying genes for naphthalene degrading pathway. Lett Appl Microbiol 26:265–269

    Google Scholar 

  • Sanglard, D., Leisola, M.S.A., Fiechter, A. (1986) Role of extracellular ligninase in biodegradation of benzo[a]pyrene by Phanerochaete chrysosporium. Enzyme Microbiol Technol 8:209–212

    Google Scholar 

  • Sanseverino J, Werner C, Fleming J, Applegate B, King JMH, Sayler GS (1993) Molecular diagnostics of polycyclic aromatic hydrocarbon degradation in manufactured gas plant soils. Biodegradation 4:303–321

    Google Scholar 

  • Sayler GS, Hooper SW, Layton AC, Kind JMH (1990) Catabolic plasmids of environmental and ecological significance. Microb Ecol 20:1–20

    Google Scholar 

  • Schell MA (1985) Transcriptional control of the nah and sal hydrocarbon degradation operons by the nahR gene product. Gene 36:301–309

    Google Scholar 

  • Schell MA (1986) Homology between nucleotide sequences of promoter regions of nah and sal operons of the NAH 7 plasmid of Pseudomonas putida. Proc Natl Acad Sci USA 83:369–373

    Google Scholar 

  • Schell MA, Wender PE (1986) Identification of the nahR gene product and nucleotide sequences required for its activation of the sal operon. J Bacteriol 166:9–14

    Google Scholar 

  • Schneider J, Grosser R, Jayasimhulu K, Xue W, Warshawsky D (1996) Degradation of pyrene, benz[a]anthracene and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Appl Environ Microbiol 62:13–19

    Google Scholar 

  • Shi Y, Zwolinski MD, Schreiber ME, Bahr JM, Sewell GW, Hickey WJ (1999) Molecular analysis of microbial community structures in pristine and contaminated aquifers: field and laboratory microcosm experiments. Appl Environ Microbiol 65:1118–1123

    Google Scholar 

  • Shin HJ, Kim SJ, Kim YC (1997) Sequence analysis of the phnD gene encoding 2-hydroxymuconic semialdehyde hydrolase in Pseudomonas sp. strain DJ77. Biochem Biophys Res Commun 232:288–291

    Google Scholar 

  • Shuttleworth KL, Cerniglia CE (1995) Environmental aspects of polycyclic aromatic hydrocarbon biodegradation. Appl Biochem Biotechnol 54:291–302

    Google Scholar 

  • Shuttleworth KL, Sung J, Kim E, Cerniglia CE (2000) Physiological and genetic comparison of two aromatic hydrocarbon-degrading Sphingomonas strains. Mol Cell 10:199–205

    Google Scholar 

  • Simon MJ, Osslund TD, Saunders R, Ensley BD, Suggs S, Harcourt A, Suen W, Cruden DL, Gibson DT, Zylstra GJ (1993) Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene 127:31–37

    Google Scholar 

  • Smith MR (1990) The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation 1:784–791

    Google Scholar 

  • Story SP, Parker SH, Kline JD, Tzeng TJ, Mueller JG, Kline EL (2000) Identification of four structural genes and two putative promoters necessary for utilization of naphthalene, phenanthrene, and fluoranthene by Sphingomonas paucimobilis var EPA 505. Gene 260:155–169

    Google Scholar 

  • Strawinski RJ, Stone RW (1943) The utilization of hydrocarbons by bacteria.J Bacteriol 40:461–463

    Google Scholar 

  • Stucki G, Alexander M (1987) Role of dissolution rate and solubility in biodegradation of aromatic compounds. Appl Environ Microbiol 153:292–297

    Google Scholar 

  • Suen WC, Gibson DT (1993) Isolation and preliminary characterization of the subunits of the terminal component of naphthalene dioxygenase from Pseudomonas putida NCIB9816-4. J Bacteriol 175:5877–5881

    Google Scholar 

  • Suen WC, Haigler BE, Spain JC (1996) 2,4-Dinitrotoluene dioxygenase from Burkholderia sp. strain DNT: similarity to naphthalene dioxygenase. J Bacteriol 178:4926–4934

    Google Scholar 

  • Sutherland JB (1992) Detoxification of polycyclic aromatic hydrocarbons by fungi. J Ind Microbiol 9:53–62

    Google Scholar 

  • Sutherland JB, Fu PP, Yang SK, Von Tungein LS, Casillus RP, Crow SA, Cerniglia CE (1993) Enantiomeric composition of the trans-dihydrodiols produced from phenanthrene by fungi. Appl Environ Microbiol 59:2145–2149

    Google Scholar 

  • Taira K, Hayase N, Arimura N, Yamashita S, Miyazaki T, Furukawa K (1988) Cloning and nucleotide sequence of the 2, 3-dihydroxydioxygenase gene from the PCBdegrading strain of Pseudomonas paucimobilis Q1. Biochemistry 27:3990–3996

    Google Scholar 

  • Takizawa N, Iida T, Sawada T, Yamauchi K, Wang Y-W, Fukuda M, Kiyohara H (1999) Nucleotide sequences and characterization of genes encoding naphthalene upper pathway of Pseudomonas aeruginosa PaK1 and Pseudomonas putida OUS82. J Biosci Bioeng 87:723–731

    Google Scholar 

  • Takizawa N, Kaida N, Torigoe S, Moritani T, Sawada T, Satoh S, Kiyohara H (1994) Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82. J Bacteriol 176:2444–2449

    Google Scholar 

  • Thibault SL, Anderson M, Frankenberger WT Jr (1996) Influence of surfactants on pyrene desorption and degradation in soils. Appl Environ Microbiol 62:283–287

    Google Scholar 

  • Thomas JM, Yordy JR, Amador JA, Alexander M (1986) Rates of dissolution and biodegradation of water-insoluble organic compounds. Appl Environ Microbiol 52:290–296

    Google Scholar 

  • Torsvik V, Sørheim R, Goksøyr J (1996) Total bacterial diversity in soil and sediment communities-a review. J Ind Microbiol 17:170–178

    Google Scholar 

  • Tsuda M, Lino T (1990) Naphthalene degrading genes on plasmid NAH 7 are on a defective transposon. Mol Gen Genet 223:33–39

    Google Scholar 

  • Uz I, Duan YP, Ogram A (2000) Characterization of the naphthalene degrading bacterium Rhodococcus opacus M213. FEMS Microbiol Lett 185:231–238

    Google Scholar 

  • Van der Meer JR, de Vos WM, Harayama S, Zehnder AJB (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 56:677–694

    Google Scholar 

  • Van Dyke MI, Couture P, Brauer M, Lee H, Trevors TJ (1993) Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil. Can J Microbiol 39:1071–1078

    Google Scholar 

  • Van Sonsbeek HM, Beeftink HH, Tramper J (1993) Two-liquid phase bioreactors. Enzyme Microb Technol 15:722–729

    Google Scholar 

  • Villemur R, Déziel E, Benachenhou A, Marcoux J, Gauthier E, Lépine F, Beaudet R, Comeau Y (2000) Two-liquid-phase slurry bioreactors to enhance the degradation of high-molecular-weight polycyclic aromatic hydrocarbons in soil. Biotechnol Prog 16:966–972

    Google Scholar 

  • Volkering F, Breure AM, van Andel JG, Rulkens WH (1995) Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol 61:1699–1705

    Google Scholar 

  • Volkering F, Breure AM, Sterkenburg A, van Andel JG (1992) Microbial degradation of polycyclic aromatic hydrocarbons: effect of substrate availability on bacterial growth kinetics. Appl Microbiol Biotechnol 36:548–552

    Google Scholar 

  • Walter U, Beyer M, Klein J, Rehm HJ (1991) Degradation of pyrene by Rhodococcus sp. UW1. Appl Microbiol Biotechnol 34:671–676

    Google Scholar 

  • Wang RF, Cao W-W, Cerniglia CE (1995) Phylogenetic analysis of polycyclic aromatic hydrocarbon degrading mycobacteria by 16SrRNA sequencing. FEMS Microbiol Lett 130:75–80

    Google Scholar 

  • Warshawsky D, Keenan TH, Reilman R, Cody TE, Radike MJ (1990) Conjugation of benzo[a]pyrene metabolites by freshwater green alga Selenastrum capricornutum. Chem Biol Interact 74:93–105

    Google Scholar 

  • Weisenfels WD, Beyer M, Klein J (1990) Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures. Appl Microbiol Biotechnol 32:479–484

    Google Scholar 

  • Wiesche C in der Martens R, Zadrazil F (1996) Two step degradation of pyrene by white-rot fungi and soil microorganisms. Appl Microbiol Biotechnol 46:653–659

    Google Scholar 

  • Wild SR, Jones KC, Waterhouse KS, McGrath SP (1990a) Organic contaminants in an agricultural soil with a history of sewage sludge amendments: Polynuclear aromatic hydrocarbons. Environ Sci Tech 24:1706–1711

    Google Scholar 

  • Wild SR, McGrath SP, Jones KC (1990b) The polynuclear aromatic hydrocarbon (PAH) content of archives sewage sludge. Chemosphere 20:703–716

    Google Scholar 

  • Willumsen PA, Karlson U, Pritchard PH (1998) Response of fluoranthene-degrading bacteria to surfactant. Appl Microbiol Biotechnol 50:475–482

    Google Scholar 

  • Yen K-M, Gunsalus IC (1982) Plasmid gene organization: naphthalene/salicylate oxidation. Proc Natl Acad Sci USA 79:874–878

    Google Scholar 

  • Yen K-M, Gunsalus IC (1985) Regulation of naphthalene catabolic genes of plasmid NAH 7. J Bacteriol 162:1008–1013

    Google Scholar 

  • Yen KM, Serdar CM (1988) Genetics of naphthalene catabolism in pseudomonads. CRC Crit Rev Microbiol 15:247–268

    Google Scholar 

  • You I-S, Ghosal D, Gunsalus IC (1991) Nucleotide sequence analysis of the Pseudomonas putida PpG7 salicylate hydroxylase gene (nahG) and its 3’-flanking region. Biochemistry 30:1635–1641

    Google Scholar 

  • Yrjala K, Paulin L, Romantschuk M (1997) Novel organization of catechol metapathway genes in Sphingomonas sp. HV3 pSKY4 plasmid. FEMS Microbiol Lett 154:403–408

    Google Scholar 

  • Zhang YM, Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipids surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282

    Google Scholar 

  • Zhou N-Y, Al-Dulayymi J, Baird MS, Williams PA (2002) Salicylate 5-hydroxylase from Ralstonia sp. strain U2: a monoxygenase with close relationship to and shared electron transport proteins with naphthalene dioxygenase. J Bacteriol 184:1547–1555

    Google Scholar 

  • Zhou N-Y, Fuenmayor SL, Williams PA (2001) nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism. J Bacteriol 183:700–708

    Google Scholar 

  • Zylstra GJ, Gibson DT (1991) Aromatic hydrocarbon degradation: a molecular approach. Genet Eng (NY) 13:183–203

    Google Scholar 

  • Zylstra GJ, Kim E (1997) Aromatic hydrocarbon degradation by Sphingomonas yanoikuyae B1. J Ind Microbiol Biotechnol 19:408–414

    Google Scholar 

  • Zylstra GJ, Kim E, Goyal AK (1997) Comparative molecular analysis of genes for polycyclic aromatic hydrocarbon degradation. Genet Eng 19:257–269

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Labana, S., Kapur, M., Malik, D.K., Prakash, D., Jain, R. (2007). Diversity, Biodegradation and Bioremediation of Polycyclic Aromatic Hydrocarbons. In: Singh, S.N., Tripathi, R.D. (eds) Environmental Bioremediation Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34793-4_18

Download citation

Publish with us

Policies and ethics