Skip to main content

Phytoremediation of Air Pollutants: A Review

  • Chapter
Environmental Bioremediation Technologies

8. Conclusion

Thus, there are several plant, edaphic and environmental factors which regulate plant resistance to air pollution. Suitability of plants for the pollution abatement depends on how fast they are able to absorb pollutants from the atmosphere and metabolise or detoxify them at cellular levels. However, the plants with pollutant avoidance mechanism may not be recommended for mitigating air pollution level in urban or industrial areas. This makes crystal clear that effectiveness of avenue trees in urban areas, and greenbelts in and around industrial units largely depends on the selection of suitable plant species and its number.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal M, Singh J (2000) Impact of coal power plant emissions on foliar elemental concentration in plants in a law rainfall tropical region. Environ Monitor Assess 60:261–282

    Article  Google Scholar 

  • Agarwal M, Singh SK, Singh J, Rao DN (1991) Biomonitoring of air pollution around industrial sites. J Environ Biol 211–222

    Google Scholar 

  • Agrawal M, Singh B, Rajput M, Marshall F, Bell JNB (2003) Effect of air pollution of peri-urban agriculture, a case study. Environ Pollut 126:323–329

    Article  Google Scholar 

  • Agarwal SK (1986) A new distributional function of foliar phenol concentration in the evaluation of plants for their air pollution tolerance index. Acta Ecol 8:2

    Google Scholar 

  • Ahmad KJ, Yunus M, Singh SN, Srivastava K, Singh N, Kulshreshtha K (1988) Survey of Indian plants in relation to atmospheric pollutants: A research project. In: Perspectives in Environ Bot 2:283–306, Today and Tomorrow’s Printers and Publishers, New Delhi 110 005 (India)

    Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82(10):1227–1238

    Google Scholar 

  • Ashmore MR, Marshall FM (1999) ozone impacts on agriculture; an issue of global concern. Adv Bot Res 29:32–49

    Google Scholar 

  • Bach W (1972) Atmospheric pollution. New York. Mc Graw Hill

    Google Scholar 

  • Bacic T, Lynch AH, Cutler D (1999) Reactions of cement factory dust contamination by Pinus halepensis needles. Environ Exp Bot 41:155–166

    Article  Google Scholar 

  • Bermadinger-Stabentheiner E (1994) Problems in interpreting affects of air pollutants on spruce epicuticular wax. In: Perey KE, Cape JN, Jugels R, Simpson CJ (eds) Air pollutants and the leaf cuticle (NATO ASI Series Vol. G36). Springer-Verlag Berlin, pp 321–327

    Google Scholar 

  • Chapekar SB (2000) Phytomonitoring in industrial areas. In: Agrawal SB, Agarwal M (eds) Environmental Pollution and Plant Responses. Lewis Publishers, Boca Raton, USA. pp-329–342

    Google Scholar 

  • Cox RM (2003) The use of passive sampling to monitor forest exposure to O3, NO2 and SO2, a review and some case studies. Environ Pollut 126:301–311

    Article  Google Scholar 

  • Darral NM (1989) The effects of air pollutants on physiological processes in plants. Plant Cell Environ 12:1–30

    Article  Google Scholar 

  • Das TM, Bhaumik A, Chakravarty A (1981) Trees as dust filters. Science Today 15(12):19–21

    Google Scholar 

  • Derwent RC, Stewart HNM (1973) Atmos Environ 7:385

    Article  Google Scholar 

  • Dixit AB (1988) Effects of particulate pollutants on plants at ultrastructural and cellular levels. Ann Bot 62:643–651

    Google Scholar 

  • Dochinger LS (1980) Interception of air borne particulates by tree planting. J Environ Qual 9:265–268

    Google Scholar 

  • Farooq M, Saxena RP, Beg MU (1988) Sulfur dioxide resistance of Indian trees. Water, Air, Soil Pollut 40:307–316

    Google Scholar 

  • Freer-Smith PH (1985) The influence of SO2_and NO2_on the growth development and gas exchange of Betula pendula Roth. New Phytol 99:417–430

    Article  Google Scholar 

  • Fuller EC (1974) Chemistry and man’s environment. Houghton Mifflin Company, Boston, pp 502

    Google Scholar 

  • Ghiorse WC, Alexander M (1976) J Environ Qual 5:227

    Google Scholar 

  • Giordano M, Norici A, Hell R (2005) Sulfur and phytoplankton: acquisition, metabolism and impact on the environment. New Phytol. 166:371–382

    Article  Google Scholar 

  • Guerrero MG, Vega JM, Losada M (1981) The assimilatory nitrate reducing system and its regulation. Ann Rev Plant Physiol 32:169–204

    Article  Google Scholar 

  • Hanson PJ, Lott K, Taylor GE Jr, Gunderson CA, Lindberg SE, Ross-Toad BM (1989) Atmos Environ 23:1783

    Article  Google Scholar 

  • Huttunen S (1994) Effects of air pollutants of epicuticlular wax structure. In: Perey KE, Cape JN, Jagels R, Simpson CJ (eds) Air Pollutants and leaf cuticle (NATO ASI Series Vol. G36) Springer-Verlag, Verlag, pp 81–96

    Google Scholar 

  • Ito O, Yoneyama T, Kumazawa K (1978) Amino acid metabolism in plant leaf, IV: The effect of light on ammonium assimilation and glutamine metabolism in the cells isolated from Spinach leaves. Plant and Cell Physiol 19:1109–19

    Google Scholar 

  • Jäger HJ, Unsworth MH, DeTimmerman L, Mathy P (Eds) (1993) Effects of air pollution on agricultural crops in Europe. Air Pollution research report 46, Commission of the European Communities, Brussels, Belgium

    Google Scholar 

  • Joshi G (1998) Ambient air quality at road side of an urban area with special reference to respirable dust and total suspended particulate matter. Pollut Res 17(1):79–81

    Google Scholar 

  • Joshi OP, Wagela DK, Pawar K (1997) Urban air pollution effects on two species on Cassia. Poll Res 16(1):1–3

    Google Scholar 

  • Kaji M, Yoneyama T, Totsuka T, Iwaki (1980) Absorption of atmospheric NO2 by plants and soils VI. Transformation of NO2 absorbed in the leaves and transfer of nitrogen through the plants. Res Rep Natl Inst Environ Stud Japan 11:51–58

    Google Scholar 

  • Kalyani Y, Singaracharya MA (1995) Biomonitoring of air pollution in Warangal city, Andhra Pradesh. Acta Botanica Indica 23:21–24

    Google Scholar 

  • Keller T, Jager HJ (1980) Der eunflurs boden burtiga sulfation auf den schwefchalf sulfur dioxide-begaster. Assimilation usorgane von wald aumarten. Augewante. Botanik. 54:74–89

    Google Scholar 

  • Khan AM, Pandey V, Yunus M, Ahmad KJ (1989) Plants as dust scavengers. A case study. The Indian Foresters 115(9):670–672

    Google Scholar 

  • Krupa SV, Legge AH (1999) Foliar injury symptoms of Saskatoon service berry (Amelanchier alnifolia Nutt.) as a biological indicator of ambient sulfur dioxide exposures. Environ Pollut 106:449–454

    Article  Google Scholar 

  • Kumar GS, Dubey PS (1998) Differential response and detoxifying mechanism of Cassia siamea Lam. and Dalbergia sissoo Roxb. of different ages to SO2 treatment. J Environ Biol 9(3):243–249

    Google Scholar 

  • Lewis S (1976) Vitamin C: In Molecular Biology and Medicinal Potential, London, Academic Press

    Google Scholar 

  • Malviya NK (1986) Sulfur dioxide and ascorbic acid interaction bioassay, Dissertation Thesis, School of Studies in Botany, Vikram University, Ujjain (India)

    Google Scholar 

  • Mandal M, Mukherji S (2001) A study on the activities of few free radicals scavenging enzymes present in fine road side plants. J Environ Biol 22(4):301–305

    Google Scholar 

  • Manninen S, Huttunen S (2000) Response of needle sulfur and nitrogen concentration of Scots pine versus Norway spruce to SO2 and NO2. Environ Pollut 107:421–436

    Article  Google Scholar 

  • Mansfield TA, Freer-Smith PH (1981) Effects of urban air pollution on plant growth. Biol Rev 56:343–368

    Article  Google Scholar 

  • Mansfield TA, Freer-Smith PH (1984) The role of stomata in resistance mechanisms. In: Kozoil MJ, Whatly FR (eds) Gaseous air pollutants and plant metabolism 131–146, London Butter Worths

    Google Scholar 

  • Matsushima J (1972) Bull Fac Agric Mic Univ Tsu 44:131

    Google Scholar 

  • Meetham AR (Ed) (1964) Atmospheric Pollution: Its Origin and Prevention. Oxford: Pergamon Press

    Google Scholar 

  • Murray AJS, Wellburn AR (1985) Differences in nitrogen metabolism between cultivars of tomato and pepper during exposure to glass-house atmosphere containing oxides of nitrogen. Environ Pollut 39:303–316

    Article  Google Scholar 

  • Murthy MSH, Raza SH, Adeel A (1988) A new method in evaluation of SO2 tolerance of certain trees. Air Pollut. & Forest Decline. In: Bucher JB, Bucher I, Wall N, (eds) Proc 14th Int. Meeting for specialists in air pollution effects on Forest.

    Google Scholar 

  • Ecosystem, IUFRO P2O5, Interlaken, Switzerland, Oct. 2-8, 1988. Birmensdorf, 1989, pp 486–488

    Google Scholar 

  • Nieboer E, Mac Farlane LD, Richardson DHS (1984) Modification of plant cell buffering capacities by gaseous air pollutants. In: Koziol MJ, Whatley FR (eds) Gaseous air pollutants and plant metabolism 313–330, London, Butter Worths

    Google Scholar 

  • Nivane SY, Chaudhari PR, Gajghate DG, Tarar JL (2001) Foliar biochemical features of plants as indicators of air pollution. Bull Environ Contam Toxicol 67:133–140

    Article  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  Google Scholar 

  • Norby RJ (1989) Foliar nitrate reductase: A marker for assimilation of atmospheric nitrogen oxides. In: Grosblatt N (ed) Biological Markers of Air-Pollution Stress and Damage in Forests. National Academy Press, Washington DC, pp 245–250

    Google Scholar 

  • Novoderzhikina Yu G, Andrianova LA, Zheldakkova GG (1966) Effect of plantings on the sanitary and hygienic conditions of densely polluted settlement. In: Nuttonson M (ed) AICE Survey of USSR, Vol. 2, silver spring Md. American Institute of crop ecology, pp 25–31

    Google Scholar 

  • Okano K, Totsuka T (1986) Absorption of nitrogen dioxide by sunflower plants grown at various levels of nitrate. New Phytol 102:551–556

    Article  Google Scholar 

  • Okano K, Fukuzawa T, Tazaki T, Totsuka T (1986) 15N dilution method for estimating the absorption of atmospheric NO2 by plants. New Phytol 102:73–84

    Article  Google Scholar 

  • Okano K, Machida T, Totsuka T (1989) Differences in ability of NO2 absorption in various broad leaved tree species. Environ Pollut 58:1–18

    Article  Google Scholar 

  • Pandey SN (1983) Impact of thermal power emission on vegetation and soil. Water, Air, Soil Pollut 19:87–100

    Article  Google Scholar 

  • Pandey SN, Rao DN (1980) Effect of coal smoke sulfur dioxide pollution on the accumulation of certain minerals and chlorophyll content of wheat plant. Tropical Ecol 19(2):155–162

    Google Scholar 

  • Parther RJ, Miyamoto S, Bohn HL (1973) Soil Sci Soc Am J 37:914

    Google Scholar 

  • Pawar K (1981) Pollution studies in Nagda area due to Birla Industrial Discharges, Ph.D. Thesis, School of Studies in Botany, Vikram University, Ujjain, M.P. (India)

    Google Scholar 

  • Priebe A, Klein H, Jager HJ (1978) Role of polyamines in SO2-polluted pea plants. J Exp Bot 29:1045–1050

    Article  Google Scholar 

  • Rangarajan TN, Arjunan MC, Ponnammal NR (1995) Effect of automobile pollution on few ornamental plants. Ecol Env Cons 1:1–4

    Google Scholar 

  • Reddy BM, Dubey PS (2000) Scavenging potential of trees to SO2 and NO2 under experimental condition. Intl J Ecol Environ Sci 26:99–106

    Google Scholar 

  • Riederer, Lukas-Schreiber (2001) Protecting against water loss: analysis of the barrier properties of plant cuticle. J Exp Bot (Special issue on plants under stress). 52(363):2023–2032

    Google Scholar 

  • Roberts BR (1974) Folia sorption of atmospheric SO2 by higher plants. Environ Pollut 7:133–140

    Article  Google Scholar 

  • Rodhe H, Dentener F, Schulz M (2002) The global distribution of acidifying wet deposition. Environ Sci Technol 36:4382–4388

    Article  Google Scholar 

  • Roger HH, Campbell JC, Volk RJ (1979) Nitrogen-15 dioxide uptake and incorporation by Phaseolus vulgaris (L.). Science 206:333–335

    Article  Google Scholar 

  • Romney EM, Lindberg RG, Hawthorne HA Bystrom BG, Larson KH (1963) Contamination of plant foliage with radioactive fallout. Ecology 44:343–349

    Article  Google Scholar 

  • Rowland AJ (1986) Plant Soil 91:53

    Article  Google Scholar 

  • Rowland AJ, Drew MC, Wellburn AR (1987) Foliar entry and incorporation of atmospheric nitrogen dioxide into barley plants of different nitrogen status. New Phytol 107:357–371

    Article  Google Scholar 

  • Runge M (1983) Physiology and ecology of nitrogen nutrition. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of Plant Physiology, New Series, vol. 12C. Springer-Verlag, Berlin, pp 163–200

    Google Scholar 

  • Sabaratnam S, Gupta G (1988) Effect of NO2 on leaf chlorophyll and nitrogen content of soybean. Environ Pollut 51:113–120

    Article  Google Scholar 

  • Sauter JJ, Kammerbauer H, Panber L, Hock B (1987) Evidence for the accelerated micro morphological degradation of Epistomatal wax in Norway spruce by motor vehicle emission. European J Forest Pathol 17:444–448

    Google Scholar 

  • Sauter JJ, Voß JU (1986) SEM-observations on the structural degradation of epistomatal waxes in Picea abies (L.) Karst.-and its possible role in the “Fichtensterben”. European J Forest Pathol 16:408–423

    Google Scholar 

  • Shetey RP, Chephekar SB (1978) Some estimations dust fall in the city of Bombay, using plants. Proc. Seminar on Recent Advances in Ecology, New Delhi, Today and Tomorrow, pp 61–70

    Google Scholar 

  • Sigurd S-H, Nancy MD, Lutz WB, Wellburn AR (1988) Air pollution and plant metabolism. Elsevier Applied Science, London and New York

    Google Scholar 

  • Singh N, Yunus M, Srivastava K, Singh SN, Pandey V, Mishra J, Ahmad KJ (1995) Monitoring of auto exhaust pollution by road side plants. Environ Monitor Assess (USA) 34:13–25

    Article  Google Scholar 

  • Singh SK, Rao DN (1983) Evaluation of plants for their tolerance to air pollution. In: Mathur HB, Pal K (eds) Proc Sym Air Pollut Control, Delhi IIT, pp 218–224

    Google Scholar 

  • Sinn JP, Pell EJ (1984) Uptake rate of nitrogen dioxide by potato plants. J Air Pollut Control Assoc 34:668

    Google Scholar 

  • Smardon RC (1988) Perception and aesthetics of urban environment: review of the role of vegetation. Land scape urban Plann 15:85–106

    Article  Google Scholar 

  • Smith PA, Raven JA (1979) Intercellular pH and its regulation. Ann Rev Plant Physiol 30:289–311

    Article  Google Scholar 

  • Spedding DJ Ziegler I, Hampp R, Ziegler H (1980) Effect of pH on the uptake of S35 sulfur from sulfate, sulfite and sulfide by isolated spinach chloroplast. Z Pflanzenphysiol 96:351–364

    Google Scholar 

  • Srivastava HS, Oremrod DD (1984) Effects of NO2_and nitrate nutrition on growth and nitrate assimilation in bean leaves. Plant Phsyiol 76:418–423

    Google Scholar 

  • Srivastava HS, Ormrod DP (1989) Nitrogen dioxide and nitrate nutrition effects of nitrate reductase activity and nitrate content of bean leaves. Environ Exp Bot 29:433–439

    Article  Google Scholar 

  • Srivastava HS, Jolliffe PA, Runeckles VC (1975) Inhibition of gas exchange in bean leaves by NO2. Can J Bot 53:466–474

    Google Scholar 

  • Srivastava HS, Ormrod DP, Hale BA (1994) Responses of greening bean seedling leaves to nitrogen dioxide and nitrate supply. Environ Pollut 86:37–42

    Article  Google Scholar 

  • Srivastava HS, Ormrod DP, Hale BA (1995) Assimilation of nitrogen dioxide by plants and its effects or nitrogen metabolism. In: Nitrogen nutrition in Higher plants (Srivastava HS, Singh RP, Eds), pp 417–430. Associated Publishers Co., New Delhi, India

    Google Scholar 

  • Takeuchi Y, Nihira J, Kondo N, Tezuka T (1985) Plant Cell Physiol. 26: 1027

    Google Scholar 

  • Taylor GE Jr, Hanson PJ, Baldochi DD (1988) In: Heck WW, Taylor OC, Tingey DT (eds) Assessment of crop loss by air pollutants, Elsevier Pub. New York, pp 227

    Google Scholar 

  • Thoene B, Schrader P, Papen H, Egger A, Rennenberg H (1991) New Phytol 117:575

    Article  Google Scholar 

  • Varshney CK (1985) Effects of sulphur dioxide on plants Final Technical Report, DoEn, Ministry of Environment and Forest, Govt. of India

    Google Scholar 

  • Varshney CK, Mitra I (1993) Importance of hedges in improving urban air quality. Landscape and Urban Planning 25:75–83

    Article  Google Scholar 

  • Varshney CK, Mitra I (1995) Response of tropical stress of sulphur dioxide stress and recovery. Intl J Environ Studies 49:13–21.

    Google Scholar 

  • Verma A (2003) Attenuation of automobile generated air pollution by higher plants. Ph.D. Thesis, University of Lucknow, Lucknow, India

    Google Scholar 

  • Viskari E-L, Kossi S, Holopainen JK (2000) Norway spruce and spruce shoot aphid as indicators of traffic pollution. Environ Pollut 107:305–314

    Article  Google Scholar 

  • Vora AB, Bhatnagar AR (1987) Comparative study of dust fall on the leaves in high pollution and low pollution area in Ahmedabad. V.Caused foliar injury. J Environ Biol 8(4):339–346

    Google Scholar 

  • Wellburn AR (1990) Why are atmospheric oxides of nitrogen usually phytotoxic and not alternative fertilizers. New Phytol 115:395–429

    Article  Google Scholar 

  • Wellburn AR, Capron TM, Chan HS, Horsman DC (1980) In: Mansfield TA (ed) Effects of Air Pollutants on Plants, Cambridge University Press, Cambridge, pp 105

    Google Scholar 

  • Whitmore ME, Mansfield TA (1983) Environ Pollut 31:217

    Article  Google Scholar 

  • Wingsle GO, Nasholm T, Lundmark T, Erricson A (1987) Induction of nitrate reductase in Scots pine by NOx and NO3 -. Physiol Plant 70:399–403

    Article  Google Scholar 

  • Wu Y, Hau J, Li W, Fu L (2002) Calculating emissions of exhaust particulate matter from motor vehicles with PART 5 model, Huan Jing Ke Xue 23(1):6–10

    Google Scholar 

  • Yamasaki H (2004) The NO world for plants: Achieving balance in an open system. Plant Cell Environ 28:78–84

    Article  Google Scholar 

  • Yamasaki H (2005) Nitric oxide research in plant biology: its past and future. In: Magalhaes JR, Singh RP, Passos LP (eds) Nitric oxide signaling in higher plants, Stadium press, Houston (in press)

    Google Scholar 

  • Yoneyama T, Arai K, Totsuka I (1980) Plant Cell Physiol 21:1367

    Google Scholar 

  • Yu S-W, Li L, Shimazaki KI (1988) Environ Pollut 55:1

    Article  Google Scholar 

  • Zeevart AJ (1974) Induction of nitrate reductase by NO2. Acta Bot Neert 23:345–346

    Google Scholar 

  • Zeevart AJ (1976) Some effects of fumigating plants for short periods with NO2. Environ Pollut 11:97–108

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Singh, S., Verma, A. (2007). Phytoremediation of Air Pollutants: A Review. In: Singh, S.N., Tripathi, R.D. (eds) Environmental Bioremediation Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34793-4_13

Download citation

Publish with us

Policies and ethics